← 返回
电动汽车驱动 ★ 4.0

极端天气条件下电动汽车热管理系统比较分析:以2019款日产Leaf Plus、2020款雪佛兰Bolt和2020款特斯拉Model 3为例

Comparative analysis of thermal management systems in electric vehicles at extreme weather conditions: Case study on Nissan Leaf 2019 Plus, Chevrolet Bolt 2020 and Tesla Model 3 2020

作者 Rabih Al Hadda · Charbel Mansour · Namdoo Kim · Jigu Seo · Kevin Stutenberg · Maroun Nemer
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 332 卷
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 电动汽车 能源效率 热管理 极端天气 电池温度调节
语言:

中文摘要

摘要 随着电动汽车(EV)普及率的上升以及对更长续航里程的需求日益增长,优化能源效率变得尤为关键,尤其是在极端天气条件下,而热管理是实现这一目标的核心环节。用于座舱气候控制和电池温度调节的巨大能耗可使整车能量需求增加超过50%,从而严重限制车辆续航能力。本研究针对三款主流电动汽车——2020款雪佛兰Bolt、2019款日产Leaf Plus和2020款特斯拉Model 3,开展了热管理系统(TMS)的对比分析,评估其在不同气候条件下的TMS结构配置与运行性能。通过结合在美国阿贡国家实验室受控试验台获取的实验数据与数值模拟方法,我们系统地评估了TMS架构及其运行模式对能耗和续航里程的影响。为此,开发了一个综合性的TMS模型,并集成于Autonomie软件平台中,该模型包含座舱与电池的热子模型,用于模拟温度变化及其对续航的影响。座舱气候采用单区(mono-zonal)建模方法,电池单体的温度分布则通过二维节点结构进行估算。针对每款车型独特的TMS配置进行了评估:雪佛兰Bolt和特斯拉Model 3采用双蒸发器蒸气压缩循环系统,座舱加热使用PTC加热器,电池热管理则依赖冷却液回路;而日产Leaf Plus则采用热泵配合PTC加热器用于座舱调温,电池则采用风冷方式进行冷却。在环境温度分别为35°C、22°C、−7°C和−18°C条件下开展的测试表明,不同TMS构型在不同工况下表现出显著差异的能量消耗与续航衰减特性。在35°C高温环境下,由于空调制冷负荷,特斯拉Model 3、雪佛兰Bolt和日产Leaf Plus的续航分别减少8%、9%和13%。而在冬季工况下,加热技术成为决定性因素;在−7°C时,日产Leaf所采用的热泵系统实现了更低的续航衰减(19.3%),相比之下,采用PTC加热器的特斯拉Model 3和雪佛兰Bolt续航分别下降了28.3%和31%。本研究为汽车工程师、电动汽车技术研究人员以及热管理系统设计者提供了宝贵的参考依据,有助于深入理解不同气候条件及TMS架构如何影响电动汽车的能耗表现与实际驾驶续航。

English Abstract

Abstract With the surge in electric vehicle (EV) adoption and the need for extended driving ranges, optimizing energy efficiency, particularly through thermal management, is critical, especially in extreme weather. Managing the substantial energy needed for cabin climate control and battery temperature regulation can increase energy demands by over 50 %, severely limiting range. This study conducts a comparative analysis of thermal management systems (TMS) in three popular EV vehicles, 2020 Chevrolet Bolt, 2019 Nissan Leaf Plus, and 2020 Tesla Model 3, evaluating their distinct TMS configurations and performance under varied weather conditions. Using both numerical simulations and experimental data collected on a controlled test bench at Argonne National Laboratory, we assess how TMS architecture and operational modes influence energy consumption and range. A comprehensive TMS model was developed, integrating cabin and battery thermal sub-models in the Autonomie software platform, to simulate temperature fluctuations and range impacts. Cabin climate was modeled using a mono-zonal approach, while battery cell temperature distribution was estimated through a 2D nodal structure. Each vehicle’s distinct TMS setup was evaluated: the Chevrolet Bolt and Tesla Model 3 use a dual evaporator vapor compression cycle with a PTC heater for the cabin and a coolant loop for battery thermal management ; the Nissan Leaf Plus employs a heat pump with a PTC heater for the cabin and air-cooling for the battery. Tests conducted at ambient temperatures of 35 °C, 22 °C, −7°C, and −18 °C reveal significant differences in energy use and range reduction across both configurations and conditions. At 35 °C, the Tesla Model 3, Chevrolet Bolt, and Nissan Leaf Plus have a range reduction of 8 %, 9 %, and 13 %, respectively, due to air conditioning. In winter, heating technology is paramount; at −7°C, the Nissan Leaf’s heat pump configuration achieves a lower range reduction (19.3 %) compared to the Tesla and Chevrolet Bolt PTC heaters, which reduce range by 28.3 % and 31 %, respectively. This study provides valuable insights for automotive engineers, EV technology researchers, and thermal management system designers aiming to enhance electric vehicle performance by understanding how different weather conditions and TMS architectures impact energy consumption and driving range.
S

SunView 深度解读

该研究对阳光电源EV充电及储能热管理具有重要参考价值。文中对比的三种热管理方案(双蒸发器+PTC、热泵+风冷)在极端温度下的能耗差异显著:-7°C时热泵方案续航损失仅19.3%,远优于PTC的28-31%。这为阳光电源充电桩产品优化提供启示:可开发智能温控充电策略,在极端天气下动态调整充电功率曲线以补偿车辆热管理能耗;ST系列储能PCS的电池热管理系统可借鉴液冷+热泵架构,提升PowerTitan在高寒/高温地区的循环效率。建议将该温度-能耗模型集成到iSolarCloud平台,实现充电站的预测性负荷管理。