← 返回
储能系统技术 储能系统 调峰调频 ★ 5.0

通过超高温热泵集成提升液态空气储能系统效率

Efficiency enhancement of liquid air energy storage systems through ultra-high-temperature heat pump integration

语言:

中文摘要

摘要 液态空气储能作为一种有前景的大规模储能技术正在兴起。该技术具有高能量密度和地理适应性强的优点,是电网削峰填谷的有效解决方案。然而,独立运行系统的往返效率通常仅为50%至60%,其中压缩热未能充分回收利用是导致效率偏低的关键因素。提高压缩热的利用率并提升膨胀过程中的再热温度,是改善系统性能的有效途径。本研究提出了一种创新系统,将超高温热泵单元与有机朗肯循环相结合,以应对上述挑战。该系统利用超高温热泵对压缩热进行品位提升,从而在能量释放阶段提高再热温度,解决了传统设计中普遍存在的再热温度偏低问题。此外,有机朗肯循环回收并利用压缩过程中产生的余热,产生额外电能,进一步提升系统的往返效率。本文建立了热力学模型对系统进行设计与优化,最终实现了63.14%的往返效率。经济性分析进一步表明,该系统的动态投资回收期为6.82年,在整个运行寿命期内的净现值达1285万美元,是独立液态空气储能系统的2.13倍。这些结果表明,所提出的集成系统显著提升了盈利能力与市场竞争力。通过高效利用压缩热,该系统确保了安全性、灵活性和高效率,为大规模独立式液态空气储能系统的发展提供了有价值的理论依据和技术参考。

English Abstract

Abstract Liquid air energy storage is emerging as a promising technology for large-scale energy storage. It offers high energy density and geographical flexibility, making it an effective solution for grid peak shaving. However, the round-trip efficiency of standalone systems typically ranges from 50 % to 60 %, with insufficient utilization of compression heat being a key factor contributing to low efficiency. Enhancing the use of compression heat and increasing the reheat temperature during expansion are effective strategies for improving the performance of the system. This study proposes an innovative system that integrates an ultra-high-temperature heat pump unit with an organic Rankine cycle to address these challenges. The system leverages the ultra-high-temperature heat pump to upgrade compression heat, thereby raising the reheat temperature during the energy release phase and resolving the low reheat temperature issue common in traditional designs. Additionally, the organic Rankine cycle recovers and harnesses the waste heat from the compression process, generating additional power and improving the round-trip efficiency. A thermodynamic model was developed to design and optimize the system, achieving a round-trip efficiency of 63.14 %. Economic analysis further reveals that the dynamic payback period of the system is 6.82 years, with a net present value of 12.85 million USD over its operational lifespan, 2.13 times higher than that of standalone liquid air energy storage systems. These results demonstrate that the integrated system improves profitability and market competitiveness. By efficiently utilizing compression heat, the proposed system ensures safety, flexibility, and high efficiency, offering valuable insights for the development of large-scale standalone liquid air energy storage systems.
S

SunView 深度解读

该液态空气储能技术通过超高温热泵与有机朗肯循环集成,将往返效率提升至63.14%,为阳光电源PowerTitan等大规模储能系统提供重要参考。压缩热高效利用理念可应用于ST系列PCS的热管理优化,结合iSolarCloud平台实现余热回收监控。超高温热泵技术与阳光电源三电平拓扑、SiC功率器件的高效转换特性协同,可探索储能系统能量梯级利用,提升调峰调频场景下的经济性。该集成方案的6.82年投资回收期为储能项目商业化提供新思路。