← 返回
基于人工智能
AI)与级联压缩空气储能优化太阳能光伏电站热电联产系统以实现稳定发电和削峰填谷:聚焦日本的案例研究
| 作者 | Ehsanolah Assareh · Abolfazl Keykhah · Ali Bedakhanian · Neha Agarwalb1 · Moonyong Le |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 调峰调频 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Thermoeconomical solar assessments and environmental analysis. |
语言:
中文摘要
摘要 本研究提出了一种新型太阳能热电联产系统,该系统将压缩空气储能单元(CAES)和燃气轮机(GT)集成到由光伏面板组成的太阳能电站中。本研究的主要目标是通过利用CAES解决太阳能发电不稳定性问题,并在用电高峰期提供支持。所提出的系统采用EES软件进行建模,并通过先进的人工智能(AI)方法(包括人工神经网络和智能算法)对系统性能进行优化。分析确定了五个显著影响系统性能的关键决策变量:光伏面板数量、CAES压力比、CAES入口压力、燃气轮机效率以及压缩机效率。结果表明,经过优化的太阳能热电联产系统可实现36.44%的㶲效率和13.76美元/小时的成本率。系统的㶲分析显示,㶲损失最大的部件为太阳能电站、燃气轮机和压缩机。此外,本研究还考察了日本八个城市的天气条件对系统性能的影响,考虑了两种运行模式:使用系统电力和不使用系统电力(PV模式)。结果表明,所提出的太阳能热电联产系统在全年范围内具有巨大的清洁电力生产潜力,且CAES的应用能够有效克服太阳能系统的不稳定性,并在用电高峰期发挥重要作用。研究结果突出了在日本将CAES与AI技术集成应用于太阳能光伏发电系统中,以实现稳定高效发电的广阔前景。
English Abstract
Abstract This study proposes a novel solar cogeneration system that integrates compressed air energy storage units (CAES) and gas turbines (GT) with a solar farm consisting of photovoltaic panels . The primary objective of this research is to address the instability of solar energy production and help during peak energy consumption by utilizing CAES. The proposed system is modeled using EES software, and its performance is optimized using advanced artificial intelligence (AI) methods, including artificial neural networks and intelligent algorithms. The analysis identifies five critical decision variables that significantly impact system performance : the number of photovoltaic panels, CAES pressure ratio, CAES inlet pressure , gas turbine efficiency , and compressor efficiency . The results demonstrate that the optimized solar cogeneration system can achieve exergy efficiency of 36.44 % and a cost rate of 13.76 $/hour. The exergy analysis of the system indicates that the most significant destruction is related to the solar farm, gas turbine, and compressors. Furthermore, this study investigates the effect of weather in eight Japanese cities on system performance, considering two operating modes: with and without using system electricity (PV mode). The results show that the proposed solar cogeneration system has significant potential for clean electricity generation and CAES applications to overcome the instability of the solar system and help during peak energy consumption throughout the year. The study's findings highlight the attractive potential of integrating CAES and AI technologies in solar photovoltaic systems for stable and efficient power generation in Japan .
S
SunView 深度解读
该光伏-压缩空气储能联合发电系统对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。研究验证了储能系统在解决光伏波动性和电网调峰方面的核心作用,与我司PowerTitan储能方案的应用场景高度契合。AI优化方法可启发iSolarCloud平台的智能调度算法升级,通过机器学习优化PCS效率、压缩机协同控制等关键参数。日本多城市气候适应性研究为我司储能产品的国际化部署提供数据支撑,特别是GFM控制技术在光储联合系统中的稳定性优势可进一步凸显。