← 返回
基于数据驱动未知输入观测器的直流微电网虚假数据注入攻击检测
False Data Injection Attack Detection in DC Microgrids Based on Data-Driven Unknown Input Observers
| 作者 | Ge Yang · Luis Herrera · Xiu Yao |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年2月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 微电网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 直流微电网 虚假数据注入攻击 数据驱动未知输入观测器 检测 定位 |
语言:
中文摘要
直流微电网系统通常采用多分布式发电单元互联的分层控制结构,依赖通信层实现协调控制,但也因此面临虚假数据注入攻击(FDIA)的安全威胁,可能导致系统运行点偏移甚至失稳。本文提出一种基于数据驱动的未知输入观测器(UIO)方法,用于检测和识别FDIA。该方法仅利用历史输入输出数据构建观测器,无需微电网模型参数信息。通过Simulink仿真与硬件在环实时仿真验证,所提方法能有效检测并定位直流微电网二次控制通信链路中的虚假数据注入攻击。
English Abstract
DC microgrid systems commonly feature a hierarchical control architecture with multiple interconnected distributed generation units (DGUs), requiring the integration of communication layers. This integration introduces a potential vulnerability, as malicious attackers can exploit the system by injecting false data, which could result in a shift in the operating point of the system or make the entire system unstable. To overcome this issue, this article proposes a data-driven unknown input observer (UIO) to detect and identify false data injection attacks (FDIAs) in the system. The data-driven UIOs are designed using only historical input/output data, which can be collected through simulations or experimental results. The developed UIOs do not require knowledge of the microgrid parameters. The proposed data-driven UIOs are then validated through Simulink and hardware-in-the-loop real-time simulation case studies to detect FDIAs in the secondary control of dc microgrids. The results show that the proposed observers can effectively detect and localize FDIAs in the communication links of the system.
S
SunView 深度解读
该数据驱动FDIA检测技术对阳光电源储能与微电网产品具有重要应用价值。ST系列储能变流器和PowerTitan系统采用分层控制架构,二次控制层依赖通信网络实现功率分配与电压调节,易遭受虚假数据注入攻击。所提无模型参数的UIO观测器方法可直接集成至iSolarCloud云平台,实现储能集群通信链路的实时安全监测。该技术对光储充一体化微电网系统尤为关键,可保障多台SG逆变器与ST储能协同控制的通信安全,防止攻击导致的母线电压偏移和功率失配。建议将该检测算法嵌入边缘控制器,结合现有智能诊断模块,构建主动防御型安全架构,提升分布式能源系统的网络安全防护能力。