← 返回
用于含可再生能源的微电网中功率潮流管理的混合优化方法
Hybrid optimization for power flow management in microgrids with renewable energy sources
| 作者 | G.Rajenda |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 微电网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Hybrid WPOA optimizes power flow in MGs with renewable energy integration. |
语言:
中文摘要
有效的功率潮流(PF)管理对于旨在优化成本、充分利用可再生能源(RE)并维持系统稳定性的微电网(MGs)至关重要。本研究提出一种混合优化策略,将鹈鹕优化算法(POA)与海象优化器(WO)相结合,形成海象-鹈鹕优化算法(WPOA),用于管理含混合可再生能源系统(HRES)的微电网中的功率潮流。通过调节电压源逆变器(VSI)信号,并考虑有功功率(AP)和无功功率(RP)的变化,所提出的模型采用多目标函数来解决电源与负荷之间的功率交换差异问题。该方法优化了功率控制器参数,确保了可靠的能源供应,降低了对主电网的依赖,并实现了并网模式与孤岛模式之间平滑切换。在MATLAB/Simulink中的仿真实验结果表明,与现有方法相比,该技术在成本最小化方面取得了38.81%的改善,空气污染减少了21%。WPOA在优化性能和稳定性方面优于樽海鞘群粒子群算法(SPSA)、粒子群优化算法(PSO)、增强型水母搜索算法(EJS)、风驱动优化算法(WDO)以及矮獴优化算法(DMO),其平均值最低为0.9323,中位数最低为0.9187,标准差(SD)最小为0.0936。此外,WPOA达到了最高的效率水平97.2%,超越所有现有方法,显著提升了微电网中的功率潮流管理水平。
English Abstract
Abstract Effective power flow (PF) management is crucial for microgrids (MGs) aiming to optimize costs, leverage renewable energy (RE), and maintain system stability. This research introduces a hybrid strategy using a Pelican Optimization Algorithm (POA) and Walrus Optimizer (WO) combined into the Walrus-POA (WPOA) to manage PF in MGs with hybrid RE sources (HRES). By regulating voltage source inverter (VSI) signals and considering variations in active power (AP) and reactive power (RP), the proposed model addresses power exchange discrepancies between sources and loads through a multi-objective function. This approach enhances power controller parameters, ensuring reliable energy supply, reducing central grid dependence, and facilitating smooth transitions between grid-connected as well as islanded modes. MATLAB/Simulink implementation shows the technique’s effectiveness, achieving a 38.81% cost minimization as well as a 21% lessening in air pollution, compared to existing methods. WPOA achieves the lowest mean 0.9323, median 0.9187, and standard deviation (SD) 0.0936, outperforming Salp Particle Swarm Algorithm (SPSA), Particle Swarm Optimization (PSO), Enhanced Jellyfish Search (EJS), Wind Driven Optimization (WDO), and Dwarf Mongoose Optimization (DMO) in consistency and optimization performance. It also attains the highest efficiency at 97.2%, surpassing all existing methods and enhancing PF management in MGs.
S
SunView 深度解读
该混合优化算法对阳光电源ST系列储能变流器和微电网解决方案具有重要价值。WPOA算法在VSI信号调控和有功/无功功率协调方面的优异表现(97.2%效率、38.81%成本优化),可直接应用于PowerTitan储能系统的GFM/GFL控制策略优化。其并离网平滑切换能力与阳光电源VSG技术高度契合,可提升iSolarCloud平台的智能调度算法,增强微电网多能互补场景下的功率流管理性能,降低对主网依赖并减少21%污染排放。