← 返回
电动汽车驱动 微电网 ★ 5.0

基于人工智能的未来低压社区微电网设计与运行方法:真实案例研究

Design and operation of future low-voltage community microgrids: An AI-based approach with real case study

作者 Md Morshed Alam · Md Jahangir Hossain · Muhammad Ahsan Zam · A. Al Durr
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 电动汽车驱动
技术标签 微电网
相关度评分 ★★★★★ 5.0 / 5.0
关键词 New approach combining AI-based clustering and profiling techniques and a PSO-MILP optimization algorithm.
语言:

中文摘要

摘要 人工智能在微电网(MG)设计与运行中的应用有助于提升其能源效率、韧性以及降低能源供应成本。本研究提出一种新方法,对将现有低压配电网转型为微电网进行综合性分析,以实现2050年净零排放目标。本文设计并实施了一种基于数据驱动的机器学习聚类与负荷特征提取方法,用于从历史数据中提取关键数据、约束条件及依赖关系。进一步地,利用所获得的约束与依赖关系确定可再生能源电源的配置容量。提出一种双层优化技术,以确保成本与可再生能源(RES)容量之间的合理协调。通过采用澳大利亚某能源社区的真实历史用电与发电数据,开展了全面的分析研究。基于聚类分析结果,选取连续多日的数据进行分析。研究结果表明,相较于传统并网系统,所提出的微电网系统实现了更高的可再生能源利用率和更低的电力成本,在由燃煤电网系统向所提微电网系统过渡时,碳排放量最多可减少98.23%。此外,由电网分时电价体系转变为所提出的微电网架构,可实现65.45%的成本降低。这些案例研究还将帮助研究人员识别新的潜在研究方向与产业应用,从而加速偏远社区微电网的推广应用。

English Abstract

Abstract The utilization of artificial intelligence in the design and operation of a microgrid (MG) can contribute to improve its energy efficiency, resiliency, and cost of energy supply. This research proposes a new approach to conduct a comprehensive analysis for transforming existing low-voltage networks into MGs to achieve the net-zero goal by 2050. A data-driven machine learning-based clustering and profiling approach is designed and implemented to extract the data, constraints, and dependencies from the historical data. Furthermore, the constraints and dependencies are utilized for determining the renewable energy sources’ capacity. A Bi-level optimization technique is developed to ensure appropriate coordination of cost and renewable energy source (RES) capacity. A comprehensive analysis is carried out utilizing real historical demand and generation data of an energy community in Australia. Based on the clustered analysis, the consecutive day’s data are considered for the analysis. The findings reveal that the proposed microgrids achieve higher renewable RES utilization and lower electricity costs compared to grid-connected systems, with the potential to reduce carbon emissions by up to 98.23% when transitioning from coal-based grid systems to the proposed microgrid system. Additionally, a transformation from a grid time-of-use tariff-based system to the proposed microgrid setup can lead to a cost reduction of 65.45%. These case studies will also assist the researcher in identifying new, potential ideas and industries to accelerate the implementation of remote community microgrids.
S

SunView 深度解读

该研究的AI驱动微电网优化方案与阳光电源产品体系高度契合。双层优化技术可直接应用于ST系列储能变流器与SG逆变器的协调控制,通过iSolarCloud平台集成机器学习聚类算法,实现负荷预测与能量管理优化。研究验证的98.23%碳减排和65.45%成本削减数据,为PowerTitan储能系统在社区微电网的经济性提供实证支撑。GFM控制技术结合该AI方法,可增强离网模式下的电压稳定性,推动阳光电源在澳洲等低压社区微电网市场的解决方案落地。