← 返回
光伏发电技术 储能系统 ★ 5.0

基于稀疏模型集成学习策略的主动配电网有功调度端到端协同优化

End-to-End Collaborative Optimization for Active Distribution Network Power Dispatch Based on Sparse Model-Ensemble Learning Policy

作者 Lilin Cheng · Kang Sun · Haixiang Zang · Guoqiang Sun · Zhinong Wei
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年8月
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式可再生电源 主动配电网 电力调度 端到端策略 稀疏模型集成学习
语言:

中文摘要

随着分布式可再生能源渗透率的提高,新型主动配电网日益采用灵活调节策略。源荷双侧不确定性给配电网调度带来显著挑战,传统“先预测后优化”方法难以量化实时调度与理论最优之间的性能差距。为此,本文提出一种端到端协同优化策略,直接利用格点化气象数值预报等多源信息进行调度决策,省去功率预测中间环节。为应对高维开放场景下的模型训练难题,引入稀疏模型集成学习构建调度策略,并采用约束策略优化求解。算例表明,该策略在光伏无功辅助服务与需求响应场景中优于传统方法。

English Abstract

With the higher penetration of distributed renewable power sources, novel active distribution networks are increasingly implementing flexible adjustment strategies. Currently, the dual uncertainties from both sources and demand significantly affect power dispatch in distribution networks. Typically, power dispatch is performed using a predict-then-optimize approach, making it challenging to quantify the gap between the real-time and theoretically optimal dispatch performances due to inaccuracies in power predictions. Hence, this study introduces a novel end-to-end policy to solve a collaborative optimization between prediction and dispatch. The policy directly utilizes all available information, such as gridded numerical weather forecasts, for dispatch decision-making, which eliminates the need for power predictions as intermediate variables for dispatch. To address the challenges of high-dimensional and open-scenario model training in end-to-end policies, sparse model-ensemble learning is proposed to formulate the dispatch policy model. The model is solved using constrained policy optimization. Comparative studies show that the proposed end-to-end policy outperforms the predict-then-optimize policy in real-time dispatch cases involving photovoltaic reactive power ancillary service and demand response within distribution networks.
S

SunView 深度解读

该端到端协同优化技术对阳光电源PowerTitan储能系统和SG系列光伏逆变器的智能调度具有重要应用价值。通过跳过传统功率预测环节,直接基于气象数据进行调度决策,可显著提升iSolarCloud云平台的实时响应能力。稀疏模型集成学习策略适用于ST储能变流器的多场景自适应控制,特别是在光伏无功辅助服务中,能优化逆变器的有功无功协调控制策略。该方法可集成到阳光电源的能量管理系统EMS中,提升源荷双侧不确定性下的调度精度,降低弃光率,增强配电网灵活性调节能力,为构网型GFM控制提供上层优化决策支持。