← 返回

稀疏数据驱动建模与MTDC系统最优直流电压控制

Sparse Data-Driven Modeling and Optimal DC Voltage Control of MTDC System

作者 Jun-Soo Kim · Young-Jin Kim
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年3月
技术分类 风电变流技术
技术标签 储能系统 模型预测控制MPC 电网侧储能
相关度评分 ★★★★★ 5.0 / 5.0
关键词 多端高压直流系统 电压源换流器 数据驱动模型预测控制 SINDYc方法 直流电压调节
语言:

中文摘要

本文提出一种基于数据驱动的模型预测控制(MPC)策略,用于电压源换流器(VSC)构成的多端高压直流(MTDC)系统中的最优直流电压调节。该方法采用稀疏非线性动力学识别(SINDYc)技术构建精确描述VSC电网侧非线性动态特性的数据驱动模型,并利用伪随机二进制信号(PRBS)采集训练数据。在多种训练条件下验证了SINDYc模型的准确性与鲁棒性,并与传统方法进行了对比。基于该模型设计的MPC算法可有效抑制直流电压偏差并恢复至额定运行点。仿真结果表明,在时变风电输入条件下,所提MPC策略显著提升了MTDC系统实时电压调控的性能与稳定性。

English Abstract

This paper presents a novel data-driven model predictive control (MPC) strategy for optimal DC voltage regulation in multi-terminal high-voltage direct-current (MTDC) systems based on voltage source converters (VSCs). The proposed strategy utilizes the sparse identification of nonlinear dynamics with control (SINDYc) method to develop a data-driven model that accurately captures the nonlinear dynamics of grid-side VSCs. Pseudo-random binary signals (PRBSs) are used to collect training data for model development. The accuracy and robustness of the SINDYc model are validated under various training conditions and compared with conventional data-driven methods. Based on the SINDYc model, an MPC algorithm is formulated to minimize DC voltage deviations and restore the voltage to nominal operating points. Comparative case studies are performed to demonstrate that the proposed MPC strategy significantly enhances the effectiveness and stability of real-time DC voltage regulation in MTDC systems, particularly under time-varying wind power inputs.
S

SunView 深度解读

该研究提出的数据驱动MPC控制策略对阳光电源的储能与光伏产品线具有重要参考价值。SINDYc建模方法可优化ST系列储能变流器和PowerTitan系统的电压控制性能,提升大规模储能系统的并网稳定性。其稀疏建模思路可用于改进SG系列逆变器的电网侧控制算法,增强产品在弱电网条件下的适应性。特别是在高渗透率新能源场景中,该方法有助于提升阳光电源产品的电压调节能力。建议在下一代储能变流器和大功率光伏逆变器中考虑采用类似的数据驱动控制架构,以实现更精确的电压调控。