← 返回
对抗性约束学习在配电网分布式能源鲁棒调度中的应用
Adversarial Constraint Learning for Robust Dispatch of Distributed Energy Resources in Distribution Systems
| 作者 | Ge Chen · Hongcai Zhang · Yonghua Song |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年11月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 分布式能源资源调度 鲁棒优化 对抗约束学习 混合整数线性规划 计算效率 |
语言:
中文摘要
可再生能源与负荷的波动性给配电网中分布式能源(DERs)的调度带来显著挑战,常引发不确定性导致潮流约束越限。鲁棒优化(RO)虽能有效管理此类运行风险,但非凸的交流潮流约束使其难以通过强对偶理论构建确定性等价问题。为此,本文提出对抗性约束学习方法,以生成线性代理模型用于鲁棒调度。该方法首先设计基于梯度的对抗攻击机制,识别最恶劣情况下的约束越限;预先训练“教师”模型以加速攻击过程中的梯度计算,并指导两个“学生”模型学习从候选调度决策及额定运行条件预测最恶劣越限。学生模型被重构为等效的混合整数线性规划(MILP)形式,作为原问题高效计算的代理。多场景仿真验证了所提方法在可行性、次优性与在线计算效率方面的优越性能。
English Abstract
The variability of renewables and power demands poses significant challenges for the dispatch of distributed energy resources (DERs) in distribution networks, as they often introduce uncertainties that may lead to power flow constraint violations. Robust optimization (RO) is a powerful tool for managing the operational risks caused by these uncertainties. However, solving robust DER dispatch problems is nontrivial since the non-convex AC power flow constraints prevent the use of strong duality to find deterministic counterparts. To this end, this paper proposes adversarial constraint learning that can provide linear surrogates for robust dispatch problems. This method begins by designing a gradient-based adversarial attack process to identify the worst-case constraint violations. A “teacher” model is trained in advance to enable rapid gradient calculations during this attack process. Under the teacher's supervision, two “student” models are then trained to predict the worst-case violation from candidate dispatch decisions and nominal operating conditions (i.e., renewable generation and power demands). These student models are further reformulated into equivalent mixed-integer linear programming (MILP) forms and serve as computationally efficient surrogates for the original robust dispatch problems. Simulations across various operating conditions and test systems demonstrate that our method can achieve desirable feasibility, low suboptimality, and high online computational efficiency.
S
SunView 深度解读
该对抗性约束学习技术对阳光电源PowerTitan储能系统和ST系列储能变流器的鲁棒调度具有重要应用价值。文章提出的梯度对抗攻击机制可识别最恶劣运行场景,结合MILP代理模型实现快速在线优化,可直接应用于iSolarCloud云平台的智能调度模块,提升多储能站点协同调度的鲁棒性。该方法解决了非凸交流潮流约束下的鲁棒优化难题,可增强阳光电源ESS集成方案在高比例可再生能源接入场景下的越限防控能力,显著提升分布式储能系统应对不确定性的实时调度性能,降低电网约束违规风险,为构网型GFM控制策略提供上层优化支撑。