← 返回
基于分类的空间插值法的区域分布式光伏功率预测太阳辐照度插值
Categorical Spatial Interpolation of Solar Irradiance for Regional Distributed Photovoltaic Power Forecasting
| 作者 | Chenglong Ruan · Kangping Li · Zhenghui Li · Chunyi Huang · Fei Wang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年4月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 高分辨率太阳辐照度 分布式光伏 空间插值 辐照度预测 分类插值方法 |
语言:
中文摘要
高空间分辨率太阳辐照度预报数据对区域分布式光伏发电预测至关重要。现有插值方法在云量变化等复杂天气下因局部辐照突变易产生较大误差。本文提出一种分类空间插值方法,通过自适应阈值将卫星短波辐射图像转化为二值辐照图,并训练3D U-net模型预测各网格未来辐照类别概率。概率图动态引导两个并行插值过程:分别利用晴空与多云区域站点数据,最终通过概率加权融合确定辐照值。真实数据案例验证了该方法的有效性与优越性。
English Abstract
High-spatial-resolution (HSR) solar irradiance forecast data is important for regional distributed photovoltaic (PV) power forecasting. Distributed PV sites are widely geographically distributed and the cost of obtaining HSR irradiance forecast data with full regional coverage is very high. Improving spatial resolution through interpolation based on limited sparse irradiance forecast reference points is a low-cost and feasible approach. However, existing irradiance spatial interpolation methods would produce large errors under variable weather conditions (e.g., cloudy) with limited reference points, because local abrupt changes in irradiance usually occur under such weather conditions due to cloud movement. This paper proposes a categorical spatial interpolation method to improve the accuracy of distributed PV power forecasting with limited sparse irradiance forecast data. The method first converts satellite-derived shortwave radiation images into binary irradiance maps through adaptive thresholding, then trains a 3D U-net model to predict future irradiance category probabilities for each grid. These probability maps dynamically govern two parallel interpolation processes: one using reference stations in predicted clear-sky regions, another utilizing stations in cloudy zones, with final irradiance values determined by probability-weighted fusion. Case studies on a real dataset verify the effectiveness and superiority of the proposed method.
S
SunView 深度解读
该分类空间插值技术对阳光电源iSolarCloud智能运维平台和区域级储能系统调度具有重要应用价值。通过3D U-net模型实现高精度区域辐照预测,可直接应用于:1)PowerTitan大型储能系统的多时间尺度功率预测与充放电策略优化,提升储能参与电网调度的经济性;2)SG系列逆变器集群的区域功率预测,增强分布式光伏的可调度性;3)iSolarCloud平台的预测性维护模块,通过精准辐照预测识别异常电站。该方法针对复杂天气的分类插值思路,可启发阳光电源开发基于天气模式自适应的MPPT算法和储能协调控制策略,提升新能源系统在多云等复杂场景下的发电效率和并网友好性。