← 返回
储能系统技术 储能系统 ★ 5.0

一种基于仿射算术的含电动汽车不确定性的主动配电网优化调度方法

An Efficient Affine Arithmetic-Based Optimal Dispatch Method for Active Distribution Networks With Uncertainties of Electric Vehicles

作者 Wei Dai · Hongzhou Li · Hui Liu · Hui Hwang Goh · Xiansong Yuan · Yuelin Liu
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年11月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 仿射算术 经济调度 电动汽车 储能系统 快速求解策略
语言:

中文摘要

仿射算术(AA)是处理电力系统不确定性的有效区间分析方法。然而,现有基于AA的优化研究难以准确刻画电动汽车(EV)的不确定性及其对储能系统(ESS)的累积影响,且重构后的AA模型因变量与约束众多而面临计算挑战。本文提出一种高效的AA经济调度(AAED)方法,用于含EV与ESS的主动配电网。建立了EV充电负荷区间(CLI)模型以表征插拔时间及初始/目标电量的随机性,并引入置信水平避免过度保守。在AA框架下构建ESS模型以准确追踪荷电状态并反映持续不确定性累积效应。为提升计算效率,提出快速求解策略,通过解析的部分偏差表达式替代大量状态变量与约束。仿真验证了所提模型与方法的有效性。

English Abstract

Affine Arithmetic (AA) is an effective interval analysis method for addressing uncertainties in power systems. However, previous research on AA-based optimization problems has struggled to accurately capture the uncertainties associated with electric vehicles (EVs) and the cumulative impact of uncertainties on energy storage systems (ESSs). Moreover, the reformulated AA model presents a significant computational challenge due to the high number of variables and constraints. This study proposes an efficient AA-based economic dispatch (AAED) method for active distribution networks incorporating EVs and ESSs while accounting for uncertainties. Specifically, an EV charging load-interval (CLI) model is developed to effectively capture the randomness of plug-in/plug-out times and initial/target energy. A confidence level is defined to prevent excessive conservatism in the CLI model. An ESS model is also formulated within the AA domain to address the cumulative impact of persistent uncertainty, ensuring an accurate state of charge monitoring. To enhance the computational efficiency of the AAED model without sacrificing accuracy, a fast-solving strategy is introduced. This strategy involves eliminating many state variables and constraints and replacing them with derived analytical partial deviation formulations that map the relationship between state and decision variables. Simulation results confirm the effectiveness of the proposed model and method.
S

SunView 深度解读

该仿射算术优化调度技术对阳光电源ST储能系统与充电桩产品线具有重要应用价值。文章提出的EV充电负荷区间模型和ESS荷电状态追踪方法,可直接应用于PowerTitan储能系统的能量管理策略优化,准确处理充电桩负荷波动带来的不确定性累积效应。所提快速求解策略通过解析偏差表达式减少计算量,适合集成到iSolarCloud云平台的实时调度模块,提升含大规模EV充电站的主动配电网经济调度效率。置信水平机制可避免储能系统过度保守配置,优化ST系列变流器的容量利用率,降低系统投资成本,增强阳光电源在源网荷储一体化解决方案中的竞争力。