← 返回
风电变流技术 储能系统 MPPT ★ 5.0

基于功率削减周期评估的风力发电机快速频率响应自适应惯性控制

Adaptive Inertial Control for Wind Turbine Generators in Fast Frequency Response Based on the Power Reduction Period Assessment

作者 Mahdi Heidari · Lei Ding · Mostafa Kheshti · Xiaowei Zhao · Vladimir Terzija
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年9月
技术分类 风电变流技术
技术标签 储能系统 MPPT
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风力发电机 快速频率响应 二次频率低谷 自适应惯性控制 频率最低点
语言:

中文摘要

风力发电机通过注入增量功率并随后削减功率来实现快速频率响应,但功率削减可能引发二次频率跌落(SFD),威胁系统安全。本文提出一种自适应惯性控制(AIC)策略,通过分析功率削减周期内扰动规模占比(SoDS)及功率注入延迟对系统频率的影响,优化过发电阶段的最大SoDS注入,并在设定的最优功率削减期内动态调节控制参数,避免SFD发生。该方法还考虑风速波动的适应性。基于DIgSILENT PowerFactory仿真与实时实验验证,结果表明AIC在提升频率最低点方面优于13种现有控制策略,且不引发二次频率跌落。

English Abstract

Fast frequency response of wind turbine generators (WTGs) is achieved by injecting incremental power to the grid followed by power reductions to avoid over-deceleration and ensure secure rotor speed recovery. Second frequency deeps (SFDs) are the results of such power reductions that are challenging during abrupt frequency transients that may lead to under-frequency load shedding, or cascading events leading to blackouts. To address this issue, this paper presents an adaptive inertial control (AIC) scheme for WTGs designed to maximize the improvement in frequency nadir without causing SFD. The proposed method is developed through an assessment of power reduction period of WTGs during fast frequency response. This analysis investigates the impacts on the system frequency of a) injecting different shares of disturbance size (SoDSs) by WTGs and b) latency/delay in power injection. Derived from this analysis, the AIC is proposed to inject the maximum possible SoDS during the over-production period and successfully stabilize and recover the rotor speed during the assigned optimal power reduction period with SFDs disabled. This is achieved by adaptively adjusting the AIC in the reduction period based on the SoDS injected by WTGs during the over-production stage. Also, the AIC is modified to adapt against wind speed deviations. To evaluate the performance of the AIC, a comprehensive verification is carried out by comparing AIC with thirteen existing inertial control schemes and maximum power point tracking control in various cases using wind-integrated IEEE 39-bus system in Digsilent PowerFactory and real-time experimental tests. The results confirm the effectiveness of AIC in terms of achieving maximum improvement in frequency nadir without generating SFD.
S

SunView 深度解读

该自适应惯性控制技术对阳光电源储能与光伏产品线具有重要应用价值。首先,文中提出的功率削减周期评估方法可优化ST系列储能变流器的快速频率响应能力,特别适用于PowerTitan大型储能系统的电网支撑功能。其次,通过扰动规模占比(SoDS)的动态调节思路,可改进SG系列逆变器的GFM控制策略,提升光储混合系统的频率调节性能。该技术还可应用于分布式储能的VSG控制,避免二次频率跌落风险。这对提升阳光电源产品在弱电网、高可再生能源渗透率场景下的稳定性具有重要指导意义。