← 返回
光伏发电技术 储能系统 ★ 5.0

通过多角度云层三维重建优化区域太阳辐照度的时空预测精度

Optimizing spatiotemporal prediction accuracy of regional solar irradiance through multi-angle cloud layer 3D reconstruction

作者 Wenwen Maab · Hai Zhou · Ji Wua · Fan Yang · Xu Cheng · Dengxuan Lia
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 334 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Multi-view 3D cloud reconstruction for high-res regional solar irradiance estimation.
语言:

中文摘要

准确的实时区域太阳辐照度估算是优化光伏发电系统和电网管理的关键。然而,传统方法在动态响应能力、空间分辨率和经济可行性方面存在显著局限性,难以满足复杂天气条件下的高精度应用需求。为应对这些挑战,本研究提出了一种基于全天空成像网络的高分辨率实时辐照度估算方法。通过部署十台鱼眼全天空相机,利用多视角三维云层重建技术构建区域全景云图。此外,引入一种创新的辐照度分离建模策略:直接辐照度通过云影模型计算,散射辐照度则通过时空卷积Transformer进行预测。该方法全面考虑了云层遮挡和散射效应,从而提升了辐照度估算的准确性与鲁棒性。实验结果表明,相较于传统的克里金插值法及七种基线方法,所提方法在四种典型云层过渡场景——晴朗少云、阴天伴有阵雨、早晨多云和下午多云——下均持续实现了最低的均方根误差(RMSE)和最高的变点检测率,凸显其卓越的动态响应能力和对快速辐照度波动的精确追踪性能。此外,该方法显著提高了空间分辨率,在多云条件下可达4.39米至19.45米,优于传统的静态方法。该计算框架支持高效的离线训练与实时预测,确保了强适应性。凭借低成本硬件、极低的维护需求以及高空间可扩展性,该方法为高分辨率区域太阳辐照度估算提供了一种实用且经济可行的解决方案。

English Abstract

Abstract Accurate real-time regional solar irradiance estimation is crucial for optimizing photovoltaic systems and managing power grids. However, traditional methods suffer from significant limitations in dynamic responsiveness, spatial resolution, and economic feasibility, making them inadequate for high-precision applications under complex weather conditions. To address these challenges, this study proposes a high-resolution real-time irradiance estimation method based on an all-sky imaging network. By deploying ten fisheye all-sky cameras, a regional panoramic cloud map is constructed using a multi-view 3D cloud reconstruction technique. Furthermore, an innovative irradiance separation modeling strategy is introduced, where direct irradiance is computed using a cloud-shadow model, and scattered irradiance is predicted via a spatiotemporal convolutional Transformer. This approach comprehensively accounts for both cloud occlusion and scattering effects, thereby enhancing the accuracy and robustness of irradiance estimation. Experimental results demonstrate that, compared to traditional Kriging interpolation and seven baseline methods, the proposed method consistently achieves the lowest root mean square error (RMSE) and the highest change-point detection rate across four representative cloud transition scenarios: clear with sparse clouds, overcast with showers, morning cloudy, and afternoon cloudy. This highlights its superior dynamic responsiveness and precise tracking of rapid irradiance fluctuations. Additionally, the method significantly enhances spatial resolution, achieving 4.39 m-19.45 m under cloudy conditions, outperforming conventional static approaches. The computational framework supports efficient offline training and real-time prediction, ensuring strong adaptability. With cost-effective hardware, minimal maintenance requirements, and high spatial scalability, this method offers a practical and economically viable solution for high-resolution regional solar irradiance estimation.
S

SunView 深度解读

该多角度云层3D重建辐照度预测技术对阳光电源SG系列光伏逆变器和ST储能系统具有重要应用价值。通过高精度区域辐照度实时预测(空间分辨率达4.39-19.45米),可显著优化MPPT算法动态响应速度,提升逆变器在复杂云层遮挡场景下的发电效率。结合iSolarCloud平台,该技术可实现分布式光伏电站群的功率波动预测,为PowerTitan储能系统提供精准充放电策略,增强电网友好型GFM控制性能。其低成本全天空相机方案与阳光电源智能运维体系高度契合,可作为预测性维护的关键数据源,推动光储一体化系统智能化升级。