← 返回
光伏发电技术 储能系统 ★ 5.0

离网光伏制氢系统与管道网络集成的优化设计及技术经济分析

Optimal design and techno-economic analysis of a desert off-grid photovoltaic-to-hydrogen system integrated with pipeline networks

作者 Jiaxin Xua1 · Jin Lina · Jiarong Lid1 · Ruixiao Linc · Guangsheng Pane
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 336 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The dynamic interaction between water power and hydrogen is critical for design.
语言:

中文摘要

摘要 针对利用偏远地区太阳能资源进行可持续制氢所面临的挑战,本研究提出了一种可扩展的离网光伏制氢(OgPVtH)系统。我们为该OgPVtH系统建立了一种自下而上的设计方法论,从微观和宏观两个层面刻画土地、水与能源之间的相互关联。在微观层面,我们在精确的容量配置优化模型中引入并考虑了电解槽动态的水-电-氢特性;在宏观层面,我们考虑了管道系统的动态运行压力约束,并建立了生成水-氢管道网络拓扑结构的鲁棒方法。本文以中国库布齐沙漠(Hobq Desert)为实际案例开展研究,结果表明所提出的OgPVtH系统的平准化氢气成本(LCOH)为2.59美元/千克,相较于配备碳捕集与封存(CCS)技术的煤制氢成本低3.0%,比生物能源制氢成本低25%–50%,显示出该系统具备良好的经济竞争力。对水-电-氢特性的精确建模以及对网络拓扑结构的优化分别可使LCOH降低0.35美元/千克和0.01美元/千克。敏感性分析揭示了由于运行波动性导致的输运与储存投资之间的权衡关系,当氢气流量波动率最优设定为80%时,系统总LCOH达到最小。

English Abstract

Abstract Addressing the challenge of harnessing remote solar resources for sustainable hydrogen production, this study presents a scalable off-grid photovoltaic-to-hydrogen (OgPVtH) system. We propose a bottom-up design methodology for the OgPVtH system, capturing the interconnections between land, water, and energy at micro and macro levels. At the micro level, we propose and consider the dynamic water-power-hydrogen characteristics of electrolyzers in a precise capacity allocation optimization model. At the macro level, we consider pipeline dynamic operating pressure constraints and establish a robust method for generating water-hydrogen pipeline network topologies. We conduct a real case study in the Hobq Desert. It reveals a levelized cost of hydrogen (LCOH) of 2.59 $/kg 2 for the proposed OgPVtH system, indicating a 3.0 % lower cost compared to coal-based hydrogen production with carbon capture and storage (CCS) and 25 %-50 % lower cost compared to bioenergy to hydrogen, which demonstrates the system’s economic competitiveness. The precise modeling of water-power-hydrogen characteristics and topologies can reduce LCOH by 0.35 $/kg and 0.01 $/kg, respectively. Sensitivity analysis highlights the trade-offs between investment in transmission and storage due to operational volatility, with an optimal hydrogen flow rate volatility of 80 % minimizing the total LCOH.
S

SunView 深度解读

该光伏制氢系统研究对阳光电源SG系列逆变器与ST储能系统集成应用具有重要价值。研究揭示的水-电-氢动态特性建模方法可优化我司1500V光伏系统与电解槽的功率匹配策略,降低制氢平准化成本达13.5%。其80%氢气流量波动率的最优运行点为我司PowerTitan储能系统在离网场景的容量配置提供参考依据。管网拓扑优化方法可应用于iSolarCloud平台,实现沙漠等极端环境下光伏制氢项目的智能调度与预测性维护,提升系统经济性与可靠性。