← 返回
储能系统技术 储能系统 ★ 5.0

基于实时Y-矩阵估计的电力系统自适应动态状态估计:迈向更高实用性的一步

Adaptive Dynamic State Estimation in Power Systems with Real-Time Y-Bus Matrix Estimation: A Step Toward Greater Practicality

作者 Shahin Riahinia · Amir Ameli · Mohsen Ghafouri · Abdulsalam Yassine
期刊 IEEE Transactions on Power Systems
出版日期 2025年3月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 动态状态估计 Y母线矩阵估计 自适应递归最小二乘估计器 高斯 - 牛顿可变遗忘因子 电力系统
语言:

中文摘要

动态状态估计(DSE)在电力系统调控与实时紧急分析中日益关键,得益于同步相量测量单元(PMU)和广域测量系统(WAMS)的发展。传统DSE依赖精确的系统拓扑与负荷信息,而维持这些参数的实时准确性极具挑战。本文提出一种自适应变遗忘因子递推最小二乘法,用于实时估计简化Y-矩阵,并结合高斯-牛顿变遗忘因子机制,提升跟踪灵敏度与估计精度。该方法通过逆功率流方程同步实现状态估计与Y-矩阵更新,并嵌入批处理回归扩展卡尔曼滤波框架中。在IEEE 14节点系统上的多场景仿真验证了其有效性,显著提升了DSE的实用性与鲁棒性。

English Abstract

Dynamic State Estimation (DSE) has become pivotal in power system regulation and real-time contingency analysis, thanks to advancements in Phasor Measurement Units (PMUs) and Wide-Area Measurement Systems (WAMS). Traditionally, DSE relies on accurate, up-to-date information regarding system topology and loads. Maintaining precise estimations of these dynamic parameters is challenging and crucial for effective control and protection actions within power grids. This paper addresses the limitations of traditional DSE methods by relaxing the assumption that the admittance (i.e., Y-bus) matrix must be provided as an input at every time step. Instead, an adaptive variable forgetting-factor Recursive Least Squares (RLS) estimator is proposed for real-time Y-bus matrix estimation. This innovative approach leverages the inverse power flow equations to dynamically estimate the reduced Y-bus while simultaneously performing state estimation. To enhance accuracy and responsiveness, the estimator is integrated with the Gauss-Newton Variable Forgetting Factor (GN-VFF), allowing for precise adjustments and efficient tracking of changes. Implemented within a batchmode regression-based Extended Kalman Filter (EKF), the GNVFF-enhanced Y-bus estimator bridges the gap between theoretical assumptions and practical implementation. The effectiveness of this approach is validated through various scenarios on the IEEE 14-bus test system, demonstrating its potential to improve the practicality and performance of DSE in power systems.
S

SunView 深度解读

该自适应动态状态估计技术对阳光电源储能系统具有重要应用价值。在PowerTitan大型储能系统并网运行中,实时Y-矩阵估计可增强系统对电网拓扑变化的感知能力,无需依赖精确的电网模型参数。该技术可集成到ST系列储能变流器的控制算法中,通过PMU数据实时更新电网阻抗特性,优化构网型GFM控制策略的参数自适应调整。变遗忘因子递推最小二乘法可提升iSolarCloud平台的电网状态监测精度,为多站点储能协调控制提供更可靠的实时数据基础。该方法对提升储能系统在弱电网环境下的鲁棒性和快速响应能力具有直接借鉴意义,可显著增强阳光电源储能产品的并网适应性与智能运维水平。