← 返回
储能系统技术 储能系统 ★ 4.0

用于存在未知输入和协方差失配情况下电力系统分散式动态状态估计的鲁棒自适应衰减无迹卡尔曼滤波器

Robust Adaptive Fading Unscented Kalman Filter for Decentralized Dynamic State Estimation in Power Systems Under Unknown Inputs and Covariance Mismatches

作者 Bo Chai · S. C. Chan · Y. H. Hou
期刊 IEEE Transactions on Power Systems
出版日期 2025年5月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 同步电机动态状态估计 鲁棒自适应渐消无迹卡尔曼滤波器 不良数据 渐消因子估计 性能比较
语言:

中文摘要

同步电机的动态状态估计(DSE)对电力系统的监控、保护与控制至关重要。异常值和模型不确定性导致的不良数据会显著影响估计精度。本文提出一种鲁棒自适应衰减(AF)无迹卡尔曼滤波器(UKF),用于在不良数据下进行DSE及未测输入引起的未知输入估计。该方法利用AF机制减小KF中状态与测量噪声协方差矩阵的尺度失配,抑制模型不确定性。提出基于迹运算和最小二乘法的衰减因子估计方法,并采用低阶卡尔曼滤波或递推最小二乘算法进行跟踪。进一步引入基于鲁棒统计的扩展方法以有效检测和抑制不良数据。理论分析了所提滤波器的稳定性。在48机140节点和16机68节点系统上的仿真表明,新方法在协方差失配和不良数据下较传统方法具有更高估计精度,且对未知输入的估计更准确。

English Abstract

Dynamic state estimation (DSE) of synchronous machines is crucial to the monitoring, protection, and control of power systems. Bad data due to outliers and model uncertainties can affect significantly its accuracy. This paper proposes a robust adaptive fading (AF) unscented Kalman filter (UKF) for DSE and estimation of possible unknown inputs due to unmeasured input quantities under bad data. It utilizes the AF concept to minimize possible scale mismatches in the state and measurement noise covariance matrices of the KF to mitigate these uncertainties. A simple trace operation-based and a least squares-based approaches are proposed for estimating the fading factors, which are further tracked using a low order KF or a lower complexity recursive least squares algorithm. A robust statistics-based extension of the AF-UKF is also developed to effectively detect and suppress bad data. The stability of the proposed robust AF-UKF is studied. Its performance was compared with conventional algorithms on the Northeastern Power Coordinating Council 48-machine 140-bus and a 16-machine 68-bus Power System. Simulation results suggest that the proposed decentralized DSE algorithms yield more accurate performance than conventional methods under bad-data and noise covariance mismatches. It also yields more accurate estimation of the unknown input than conventional methods tested.
S

SunView 深度解读

该鲁棒自适应衰减UKF技术对阳光电源储能与新能源并网产品具有重要应用价值。在PowerTitan大型储能系统中,可用于精确估计同步机等发电设备的动态状态,提升电网侧储能系统的协调控制精度。对于构网型GFM控制的ST系列储能变流器,该算法能在测量异常和模型不确定性下保持虚拟同步机参数的准确估计,增强系统鲁棒性。在iSolarCloud智能运维平台中,可集成该滤波算法实现对分布式光伏-储能系统的分散式状态监测,有效抑制通信延迟和传感器故障导致的不良数据,提升预测性维护的可靠性。该技术为阳光电源开发更智能的电网感知与自适应控制策略提供理论支撑。