← 返回
基于系统环境数据统计特性的戴维南等效参数辨识
Thévenin Equivalent Parameters Identification Based on Statistical Characteristics of System Ambient Data
| 作者 | Boying Zhou · Chen Shen · Kexuan Tang |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 戴维南等效参数 随机响应 滑动窗口技术 分布式实现 参数识别 |
语言:
中文摘要
本文提出一种基于电力系统随机响应统计特性的戴维南等效参数(TEP)辨识新方法。该方法利用稳态下系统的自然随机波动数据,结合滑动窗口技术计算电压、电流与功率间的灵敏度参数,实现高精度、强鲁棒性的TEP辨识。不同于传统方法,本方法无需大扰动或人工注入信号,仅依赖系统固有波动,并支持基于本地电压、电流和功率测量的分布式实施,具有较高的工程应用价值。理论分析表明,该方法在低信噪比、测量不同步和数据共线性情况下仍具良好鲁棒性,仿真结果验证了其在多种实际场景下的有效性。
English Abstract
This paper proposes a novel method for identifying Thévenin equivalent parameters (TEP) in power system, based on the statistical characteristics of the system's stochastic response. The method leverages stochastic fluctuation data under steady-state grid conditions and applies sliding window techniques to compute sensitivity parameters between voltage magnitude, current magnitude and power. This enables high-accuracy and robust TEP identification. In contrast to traditional methods, the proposed approach does not rely on large disturbances or probing signals but instead utilizes the natural fluctuation behavior of the system. Additionally, the method supports distributed implementation using local measurements of voltage magnitude, current magnitude, and power, offering significant practical value for engineering applications. The theoretical analysis demonstrates the method's robustness in the presence of low signal-to-noise ratio (SNR), asynchronous measurements, and data collinearity issues. Simulation results further confirm the effectiveness of the proposed method in diverse practical scenarios, demonstrating its ability to consistently provide accurate and reliable identification of TEP using system ambient data.
S
SunView 深度解读
该戴维南等效参数辨识技术对阳光电源储能与光伏产品具有重要应用价值。在PowerTitan大型储能系统中,可基于本地电压电流测量实时辨识电网等效阻抗,无需注入扰动信号即可评估并网点强度,为ST系列储能变流器的GFM/GFL控制模式自适应切换提供依据。在SG系列光伏逆变器中,该方法可利用自然功率波动识别电网参数变化,优化弱电网下的MPPT算法和无功支撑策略。其分布式实施特性与iSolarCloud云平台结合,可实现多站点电网强度监测与预测性维护,提升系统稳定性。该技术的强鲁棒性特别适合光储电站复杂工况下的在线参数辨识需求。