← 返回
基于拓扑结构的边缘计算框架用于电力系统小信号稳定性分析
A Topology-Based Edge Computing Framework for Digital Power System Small-Signal Stability Analysis
| 作者 | Zhiqi Xu · Wei Jiang · Junbo Zhao |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电力系统稳定性分析 边缘计算框架 智能电子设备 动态模型 特征分析 |
语言:
中文摘要
电力系统稳定性分析正向数据驱动模式转型。然而,传统集中式数据处理方式在数字化背景下面临计算与通信负担重、数据隐私等问题。为此,本文提出一种基于电力系统拓扑结构的边缘计算框架,利用智能电子设备(IED)的本地计算与通信能力,减轻控制中心负担,推动系统数字化转型。发电机侧的IED作为边缘节点,采集本地区域数据辨识子系统动态模型,并逐步合并相邻子系统模型,最终构建全系统动态模型。该模型分布式存储于各边缘节点,支持并行处理。采用分治策略进行特征值分析,将计算任务递归分解至不同节点组并行执行。算例验证了所提框架的有效性与优势。
English Abstract
Power system stability analysis is in transition towards a data-driven paradigm. However, in the context of digital transformation, the traditional centralized approach to measurement data processing faces significant challenges, including heavy computational and communication burdens, as well as data privacy concerns. Driven by this motivation, this paper proposes a power system topology-based edge computing framework that leverages the computation and communication capabilities of Intelligent Electronic Devices (IEDs) to reduce the burden on the control center and facilitate the digital transition. In the proposed framework, the IEDs equipped on generators serve as edge nodes (ENs). Each EN collects the measurement data in its local zone to identify the dynamic model of the subsystem within the zone, and the identification results of each pair of adjacent subsystems are merged. After several rounds of merging, the dynamic model of the entire power system is obtained. The obtained model is stored distributedly in the ENs, enabling parallel processing. Eigen-analysis is then performed on the dynamic model using a divide-and-conquer strategy, recursively splitting the computational task into two subtasks executed by separate EN groups. Case studies demonstrate the effectiveness of the proposed framework and highlight its benefits.
S
SunView 深度解读
该边缘计算框架对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。在大型储能电站场景中,可将小信号稳定性分析任务分布至ST系列储能变流器的本地控制器,利用其IED功能实现分布式动态模型辨识与特征值计算,有效降低集中式云平台的通信带宽和计算负荷。该技术特别适用于多储能单元并网系统的振荡模态分析,可实时监测构网型GFM控制下的系统稳定裕度。结合阳光电源现有智能诊断技术,可构建边云协同的预测性维护体系,提升大规模新能源电站的稳定性分析效率,同时保障各站点运行数据隐私,推动储能系统数字化转型。