← 返回
光伏发电技术 储能系统 ★ 5.0

通过简化实现高效:基于MLP的低压配电网净负荷预测与不确定性估计方法

Efficiency Through Simplicity: MLP-Based Approach for Net-Load Forecasting With Uncertainty Estimates in Low-Voltage Distribution Networks

作者 Anthony Faustine · Nuno Jardim Nunes · Lucas Pereira
期刊 IEEE Transactions on Power Systems
出版日期 2024年5月
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力需求预测 光伏发电 净负荷预测 概率预测 分位数回归
语言:

中文摘要

电力需求预测在低压配电网的规划与运行中日益重要。分布式能源中光伏渗透率的提升使配电侧的负荷预测问题转变为净负荷预测。本文提出一种新颖且可扩展的低压变电站概率预测方法,采用分位数回归构建多变量概率预测框架,并利用计算高效的前馈神经网络捕捉历史负荷与太阳辐照等协变量间的复杂关系。实验表明,该方法能以自回归或单次前向传播方式生成校准良好的预测结果。与四种先进方法的对比表明,所提方法在预测精度、不确定性校准和计算复杂度之间实现了良好权衡。

English Abstract

Power demand forecasting is becoming a crucial tool for the planning and operation of Low Voltage (LV) distribution systems. Most importantly, the high penetration of Photovoltaics (PV) power generation as part of Distributed Energy Resource (DER)s has transformed the power demand forecasting problem at the distribution level into net-load forecasting. This paper introduces a novel and scalable approach to probabilistic forecasting at LV substation with PV generation. It presents a multi-variates probabilistic forecasting approach, leveraging Quantile Regression (QR). The proposed architecture uses a computationally efficient feed-forward neural net to capture the complex interaction between the historical load demands and covariate variables such as solar irradiance. It is empirically demonstrated that the proposed method can efficiently produce well-calibrated forecasts, both auto-regressively or in a single forward pass. Furthermore, a benchmark against four state-of-the-art forecasting approaches shows that the proposed approach offers a desirable trade-off between forecasting accuracies, calibrated uncertainty, and computation complexity.
S

SunView 深度解读

该基于MLP的净负荷概率预测技术对阳光电源iSolarCloud智能运维平台和PowerTitan储能系统具有重要应用价值。其轻量级神经网络架构可集成至ST系列储能变流器的本地控制器,实现边缘侧实时预测,降低云端通信依赖。分位数回归提供的不确定性估计能优化储能系统充放电策略,在高光伏渗透率场景下提升能量管理精度。该方法对历史负荷与辐照数据的高效建模可增强SG逆变器的功率预测能力,配合MPPT算法实现更优发电调度。计算高效特性使其适合部署于分布式光储一体化系统,为阳光电源低压配电侧产品提供精准预测性维护和智能调度支撑。