← 返回
光伏发电技术 储能系统 ★ 4.0

干旱气候下太阳能塔式电站超临界CO2布雷顿循环的比较研究

Comparative study of supercritical CO2 brayton cycles for solar towers plants in arid climates: Design and off-design performance

语言:

中文摘要

摘要:聚光太阳能发电站(CSP)在可持续能源生产方面具有巨大潜力,但其效率常受到干旱气候下极端环境条件和有限水资源的制约。本研究针对适用于摩洛哥地区太阳能塔式电站的简单型和再压缩式超临界CO2布雷顿循环,在不同功率规模下对其设计工况及变工况性能进行了分析。研究目标是评估功率规模对循环效率和涡轮机械设计的影响,比较两种循环的性能表现,并识别出在恶劣环境中提升系统性能的最优参数。通过对两种循环构型开展详细的参数敏感性分析,确定了可提高循环效率的总回热器导热系数最优值。为验证模型的准确性,将计算结果与美国国家可再生能源实验室(NREL)的模型进行了对比。大规模太阳能集热场的设计采用系统顾问模型(SAM)完成。此外,通过变工况分析评估了环境条件变化以及传热流体温度波动对循环性能的影响。设计工况分析表明,对于两种循环结构,增大系统规模均能显著提升热效率。研究确定了简单循环和再压缩循环的最优回热器导热系数,对应的热效率分别为40.1%和45%。与SAM模型的对比验证结果显示两者具有良好的一致性,相对误差低于3%。太阳能场设计结果表明,再压缩循环所需的定日镜场面积比简单循环减少12%。此外,变工况分析还发现,在高温环境条件下,简单循环对干旱气候的适应性更强,其效率表现与再压缩循环相近。

English Abstract

Abstract Concentrated Solar Power plants offer significant potential for sustainable energy generation, but their efficiency is often constrained by extreme ambient conditions and limited water resources in arid climates. This study examines the design and off-design performance of simple and recompression supercritical CO 2 Brayton cycles across various power scales, focusing on their integration into CSP tower plants in Morocco. The objective is to evaluate the impact of scaling on cycle efficiency, turbomachinery design, compare the performance of both cycles and identify optimal parameters to enhance performance in challenging environments. A detailed parametric sensitivity study of both cycle configurations was conducted to determine the optimal total recuperator conductance for improving cycle efficiency. For model validation, the results were compared with the National Renewable Energy Laboratory model. The solar field design was developed using the System Advisor Model at large scale. Off-design conditions were analyzed to assess the effects of varying ambient conditions and heat transfer fluid temperatures on cycle performance. The design analysis demonstrates that scaling up significantly improves thermal efficiency for both cycle configurations. The study identified optimal recuperator conductance values for simple and recompression cycle, leading to thermal efficiencies of 40.1 % and 45 %, respectively. Validation against the SAM model showed strong agreement, with relative errors under 3 %. Solar field design results indicate that the recompression cycle requires 12 % less heliostat field area than the simple cycle. Additionally, off-design analysis revealed that the simple cycle is more adaptable to arid climates, maintaining similar efficiency as recompression cycle at higher ambient temperatures.
S

SunView 深度解读

该超临界CO2布雷顿循环研究为阳光电源光热储能一体化系统提供重要参考。研究表明再压缩循环可减少12%集热场面积,这与我司PowerTitan储能系统的高功率密度设计理念契合。简单循环在高温环境下的适应性优势,可指导ST系列PCS在干旱地区的热管理优化。离网工况分析方法可应用于iSolarCloud平台的预测性维护算法,提升光热电站在极端气候下的运行稳定性。该技术路线与我司储能变流器的宽温度范围运行能力形成协同,为拓展中东北非光热储能市场提供技术支撑。