← 返回
封装工艺条件对碳基钙钛矿太阳能电池降解机制的影响
Impact of Encapsulation Processing Conditions on Degradation Mechanisms of Carbon-Based Perovskite Solar Cells
| 作者 | Nikoleta Kyranaki · Cynthia Farha · Lara Perrin · Lionel Flandin · Emilie Planès · Lukas Wagner |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2025年2月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 钙钛矿光伏电池 碳基钙钛矿器件 封装材料 层压温度 稳定性 |
语言:
中文摘要
钙钛矿光伏(PV)电池的效率已创下26.7%的纪录,但在提高其针对湿度、温度变化和光照的稳定性方面仍至关重要。在这项工作中,我们研究了基于介孔碳的钙钛矿(c - PSC)器件,这是因为碳具有稳定性,且无需使用对热敏感的空穴传输层。我们将在硅基光伏中表现出良好性能的封装材料(包括一种热塑性聚烯烃封装剂)在不同层压条件下应用于c - PSC器件,以研究其对器件耐久性的影响,这是针对这种特定材料组合的一项新颖研究。固化不充分会削弱附着力、降低防潮性,并加速光照下钙钛矿的分解。将层压温度提高20°C可使样品在湿热条件下耐受1000小时,效率降低30%,而较低温度的层压则会导致性能立即下降。虽然光照对器件性能的损害仍然很大,但较高的层压温度能延缓损害,在老化400小时后仍能保留2.5%的初始功率转换效率,并减缓钙钛矿的分解。
English Abstract
Perovskite photovoltaic (PV) cells have achieved a record 26.7% efficiency, but improvements in stability against humidity, temperature shifts, and light exposure remain crucial. In this work, we explored mesoporous carbon-based perovskite (c-PSC) devices because of carbon's stability and the elimination of a heat-sensitive hole transport layer. Encapsulation materials exhibiting promising properties with silicon PV, including a thermoplastic polyolefin encapsulant, were applied under different lamination conditions to investigate the impact on c-PSC devices’ durability, which is a novel study for this specific combination of materials. Inadequate curing can compromise adhesion, reduce moisture resistance, and accelerate perovskite decomposition under light exposure. Increasing the lamination temperature by 20 °C allowed samples to withstand 1000 h of damp-heat conditions, with a 30% reduction in efficiency, while lower temperature lamination caused immediate performance drops. While light exposure remained highly degrading, higher lamination temperatures delayed damage, preserving 2.5% of the initial power conversion efficiency after 400 h of aging and slowing perovskite decomposition.
S
SunView 深度解读
该封装工艺优化技术对阳光电源光伏产品线具有重要应用价值。研究揭示的温度、压力、湿度控制与材料选择对钙钛矿电池稳定性的影响机制,可直接应用于SG系列光伏逆变器的组件适配性设计。封装参数优化带来的85°C热老化和湿热稳定性提升,为1500V高压系统在极端环境下的长期可靠运行提供技术支撑。钙钛矿电池的高效率特性结合优化封装工艺,可与阳光电源MPPT算法协同,提升系统整体发电效率。该研究为iSolarCloud平台的组件衰减预测模型提供新的退化机制数据,增强智能运维的预测性维护能力,助力光伏电站全生命周期管理。