← 返回
基于分布式协同控制的多并网型电池储能系统稳定性分析
Stability Analysis of Multiple Grid-Connected Battery Energy Storage Systems with A Distributed Cooperative Control
| 作者 | Yin Chen · Yuntao Chen · Wentian Li · Xia Chen · Xianxian Zhao |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年8月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 调峰调频 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电池储能系统 分布式协同控制 稳定性分析 阻抗模型 传统功率控制方法 |
语言:
中文摘要
电池储能系统(BESS)在可再生能源整合中发挥着至关重要的作用,它能够平衡供需、提供调频服务并支持电压稳定。然而,对于多个并网的电池储能系统而言,传统的功率控制方法往往侧重于单个电池储能系统的动态特性,而常常忽略了各电池储能系统之间的相互作用。这导致在暂态事件期间出现功率容量闲置和响应时间迟缓的问题。为解决这些问题,有人提出了一种基于一致性算法的分布式协同控制策略,以提高整个系统的响应速度,并根据荷电状态(SOC)确保稳态功率分配。然而,很少有研究人员对分布式控制方案下多个电池储能系统进行稳定性分析,且对其相互作用也未进行深入研究。本文通过引入二次控制层为多个电池储能系统建立阻抗模型,填补了这一空白。通过电磁暂态(EMT)仿真验证了该模型的准确性。利用奈奎斯特稳定性判据,本文将采用分布式协同控制的电池储能系统的稳定性与传统功率控制方法进行了比较,证明了所提方法的优势。此外,还分析了协同控制参数和通信故障对系统稳定性的影响。时域仿真证实了稳定性分析的准确性。
English Abstract
Battery energy storage system (BESS) plays a crucial role in the integration of renewable energy by balancing supply and demand, providing frequency regulation, and supporting voltage stability. However, for multiple grid-connected BESS systems, traditional power control methods, which focus on the dynamics of individual BESS, often neglect the interactions between BESSs. It results in idle power capacity and slow response times during transient events. To address these issues, a distributed cooperative control strategy based on a consensus algorithm has been proposed to improve the overall system's response speed and ensure steady-state power sharing according to the state of charge (SOC). However, few researchers have conducted the stability analysis of multiple BESSs under the distributed control scheme, and the interaction has not been thoroughly investigated. This paper addresses this gap by developing an impedance model for multiple BESSs by incorporating a secondary control layer. The modeling accuracy is validated through EMT simulations. Using Nyquist stability criterion, the paper compares the stability of BESSs with distributed cooperative control to traditional power control methods, demonstrating the advantages of the proposed approach. Additionally, the impact of cooperative control parameters and communication faults on system stability is analyzed. The time-domain simulations confirm the accuracy of the stability analysis.
S
SunView 深度解读
该分布式协同控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。研究中的小信号稳定性分析方法可直接应用于多台ST储能变流器并网场景,优化控制器参数设计以抑制低频振荡。分布式协同控制策略与阳光电源现有的构网型GFM控制技术高度契合,可增强多机并联系统的阻尼特性和鲁棒性。特征值分析方法为iSolarCloud平台的稳定性监测功能提供理论支撑,实现储能电站动态性能的预测性维护。该技术对提升大规模储能集群的频率调节和电压支撑能力具有直接指导意义,可显著增强阳光电源储能系统在新能源高渗透率电网中的适应性。