← 返回
单相两阶段并网光伏系统采用OSO-AI控制与PSPO最大功率点跟踪
Single-Phase Two-Stage Grid Integrated Solar PV System With OSO-AI Control and PSPO MPPT
| 作者 | Arun Kumar · Aryan Prajapati · Nishant Kumar · Jyoti Dhayal |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年6月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | MPPT |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 单阶段两级光伏系统 OSO - AI控制 PSPO最大功率点跟踪 电能质量 并网集成 |
语言:
中文摘要
本文针对单相两级并网太阳能光伏(SPV)系统,介绍了一种优化的二阶自适应积分器(OSO - AI)控制方法以及具有开创性的预测自调优扰动观察(PSPO)最大功率点跟踪(MPPT)技术,旨在提高配电网的电能质量。该体系结构包括一个升压转换器和一个电压源转换器(VSC),旨在最大限度地提取太阳能,并确保以最小的谐波实现与电网的无缝集成。系统的公共连接点(PCC)连接有两种不同的非线性负载。所提出的 OSO - AI 控制算法能够有效管理 VSC,以提供无功功率补偿并提高电网稳定性。通过对硬件系统进行广泛的仿真测试和严格的实验室实验,验证了该系统在动态负载扰动、电网干扰和太阳辐照度波动等情况下的鲁棒性。实验结果表明,所提出方法具有较强的鲁棒性,总谐波失真(THD)低于 5%。研究结果表明,该系统符合严格的电能质量标准,验证了 PSPO MPPT 和 OSO - AI 控制在优化并网 SPV 系统性能方面的有效性。
English Abstract
This paper introduces an Optimized Second-Order Adaptive Integrator (OSO-AI) control and ground-breaking Predictive Self-Tuned Perturb & Observe (PSPO) Maximum Power Point Tracking (MPPT) technique for a single-phase two-stage grid integrated Solar Photovoltaic (SPV) system, aimed at enhancing power quality in distribution networks. The architectural structure includes a boost converter and a Voltage Source Converter (VSC), designed to maximize solar power extraction and ensure seamless grid integration with minimal harmonics. The system’s Point of Common Coupling (PCC) have two distinct non-liner loads. The proposed OSO-AI control algorithm effectively manages the VSC to provide reactive power compensation and improve grid stability. Extensive simulation tests and rigorous laboratory experiments on hardware system are performed to verify its robustness against dynamic load perturbations, grid disturbances, and fluctuating solar irradiance. The experimental results demonstrate the robustness of the proposed approach, with total harmonic distortion (THD) under 5%. The findings highlight the system’s compliance with stringent power quality norms, validating the effectiveness of the PSPO MPPT and OSO-AI control in optimizing performance in grid-connected SPV systems.
S
SunView 深度解读
该OSO-AI控制与PSPO MPPT技术对阳光电源SG系列光伏逆变器具有直接应用价值。PSPO算法的预测性动态步长调整机制可优化现有MPPT算法,提升光照突变与局部阴影工况下的追踪效率,特别适用于SG110CX等大功率组串逆变器的多路MPPT优化。OSO-AI控制器增强的电网适应性可直接应用于弱电网并网场景,提升SG系列产品在高阻抗电网下的稳定性与电流THD性能。该技术与阳光现有1500V系统架构兼容,可通过算法迭代快速部署至iSolarCloud平台实现智能化MPPT参数自适应,为构网型逆变器的控制策略优化提供技术储备。