← 返回
一种非常规改进的猫群算法用于太阳能发电系统中的最大功率点跟踪
An unconventionally modified cat swarm algorithm for maximum power point tracking in solar power generation systems
| 作者 | Hooman Aminzadeh Vahed · Fatemeh Razi Astarae |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 344 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | MPPT |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Modified CSO algorithm with 11 upgrades for faster precise global MPP tracking. |
语言:
中文摘要
摘要:光伏系统需要最大功率点跟踪(MPPT)以提高效率,但在阴影遮挡和辐照度变化条件下,传统方法以及元启发式算法在收敛性和效率方面均面临挑战。本文提出了一种经过11个改进步骤优化的改进型猫群优化算法(CSO),以提升向全局最大功率点收敛的精度。本研究的关键创新在于,这些改进步骤要么是同类方法的首次应用,更重要的是其综合性的联合使用。这些步骤包括引入概率分布机制以动态调整猫群参数,以及设计新的控制参数以实现优化的位置选择和可控移动。该算法在多种部分遮阴条件下进行了严格测试,测试变量包括不同的迭代次数、猫群数量和光伏系统配置。在1000次仿真中,针对四种小规模和大规模系统的案例,平均误差率介于0.55%至7.52%之间。与原始CSO算法相比,改进后的CSO在收敛精度上平均提升了14.25%,从而使所提系统的输出功率提高了2.74%。进一步的仿真结果表明,当猫的数量增加到光伏组件数量的3至4倍时,精度有所提升,但超过该范围后精度迅速趋于饱和,同时计算负载持续增长;同样地,当迭代次数超过400次后,精度的提升也迅速呈现边际递减趋势。因此,所提出的方法仅需输入光伏组件数量即可无缝适应新的光伏系统,无需复杂的参数调优,确保了广泛的适用性。
English Abstract
Abstract PV systems require Maximum Power Point (MPPT) for efficiency, but traditional methods, and also Meta-heuristic algorithms, struggle with convergence and efficiency under shading and irradiance changes. This article proposes a modified Cat Swarm Optimization (CSO) algorithm with 11 improving steps to enhance convergence precision toward the global Maximum Power Point. The key innovation of this work lies in the fact that these steps represent either the first employment of their kind or, more significantly, their combined application. These steps include the implementation of probabilistic distribution mechanisms to dynamically adjust cat parameters, and introducing new control parameters for optimized position selection and controlled movement. The algorithm was rigorously tested under multiple partial shading conditions with varying iterations, cat populations, and PV configurations. Across 1000 simulations and for four cases of small-scale and large-scale systems, average error rates ranged from 0.55% to 7.52%,. Compared to the original CSO, the modified CSO demonstrated an average of 14.25% improvement in convergence accuracy which resulted in a 2.74% boost in output power of the proposed system. Further simulation results indicate that accuracy improves when increasing cats up to 3 to 4 times the panel count, but plateaus sharply beyond this point while computational load grows; likewise, increasing iterations beyond 400 provides rapidly diminishing accuracy gains. Therefore, the proposed method adapts seamlessly to new PV systems using only the panel count as input, eliminating complex tuning and ensuring broad applicability.
S
SunView 深度解读
该改进型猫群算法MPPT技术对阳光电源SG系列光伏逆变器具有重要应用价值。其在复杂遮挡工况下实现0.55%-7.52%误差率,较传统CSO提升14.25%收敛精度,可直接优化我司多路MPPT控制策略。算法自适应特性(仅需组件数量输入)与iSolarCloud平台深度融合,可实现不同规模电站的智能参数配置。概率分布动态调参机制为1500V大功率系统的全局MPP追踪提供新思路,有效提升发电效率2.74%,降低遮挡损失,增强产品市场竞争力。