← 返回
储能系统技术 储能系统 地面光伏电站 ★ 5.0

利用大规模电池储能系统和光伏系统实现配电网优化自适应电压控制

Optimized Adaptive Voltage Control for Distribution Network Using Utility-Scale BESS and PV Systems

语言:

中文摘要

光伏(PV)系统和电池储能(BESS)等分布式能源资源(DERs)渗透率的不断提高,正在从根本上改变传统的被动配电网,同时也为提高运营效率创造了机遇。例如,电池储能系统可以解决光伏输出的间歇性问题,有助于削峰,并改善电压分布。因此,本文研究了光伏和电池储能系统在提供额外电压支撑方面的运营效益,以补充有载分接开关(OLTC)等传统电压调节机制。本研究首先在一个由80个节点组成、运行电压等级为33千伏和11千伏的实际中压(MV)配电网中开展。探索了两种不同的电压控制方法,即本地控制和集中控制。在本地控制方法中,对光伏和电池储能系统的逆变器分别采用恒定功率因数(CPF)模式或电压 - 无功功率(Volt - VAR)模式运行,并分析其影响。本地电压控制往往导致分布式能源资源在电压调节方面的利用不够理想。为克服这些局限性,本文提出了一种集中式电压控制方法,采用自适应优化算法动态调整逆变器的设定值,以改善电压性能。分析通过离线和实时仿真两种方式进行。离线研究利用MATLAB和OpenDSS软件,使用实际测量数据评估所提出的电压控制策略的性能。实时验证则通过数字孪生装置进行,其中MATLAB/OpenDSS通过TCP/IP协议与OPAL - RT实时仿真器进行双向通信。该装置便于网络信息的交换和控制动作的执行,确保对所提出方案进行可靠且真实的评估。此外,还在修改后的IEEE 34节点测试系统上进行了额外测试,以评估该方法在突然负载下降和部分遮荫条件下的鲁棒性。本文还详细比较分析了现有电压控制策略,以突出所提出方法的性能优势。研究结果为深入了解本地和集中式电压控制方法的相对有效性提供了有价值的见解,表明所提出的自适应框架显著改善了现代配电网的电压分布,并优化了分布式能源资源的利用。

English Abstract

The increasing penetration of distributed energy resources (DERs), such as photovoltaic (PV) systems and battery energy storage (BESS), is fundamentally transforming traditional passive distribution networks while creating opportunities to enhance operational efficiency. For instance, BESS can address the intermittent nature of PV output, facilitate peak shaving, and improve the Voltage Profile. Therefore, this paper investigates the operational benefits of PV and BESS to provide additional voltage support, complementing traditional voltage regulation mechanisms such as on-load tap changers (OLTCs). The study is initially conducted on a real medium-voltage (MV) distribution network consisting of 80 nodes operating at 33 kV and 11 kV voltage levels. Two distinct voltage control approaches, local and centralized, are explored. In the local control approach, PV and BESS inverters are operated in either Constant Power Factor (CPF) mode or Voltage-Reactive power (Volt-VAR) mode and their impact is analyzed. Local voltage control often results in sub-optimal utilization of DERs for voltage regulation. To overcome these limitations, a centralized voltage control method is proposed, employing an adaptive optimization algorithm that dynamically adjusts inverter setpoints to enhance voltage performance. The analysis is conducted through both offline and real-time simulations. Offline studies leverage MATLAB and OpenDSS to evaluate the performance of the proposed voltage control strategies using actual measurement data. Real-time validation is carried out using a digital twin setup, where MATLAB/OpenDSS communicates bidirectionally with an OPAL-RT real-time simulator via TCP/IP protocols. This setup facilitates the exchange of network information and execution of control actions, ensuring a robust and realistic evaluation of the proposed schemes. Furthermore, additional testing is performed on a modified IEEE 34-node test system to assess the method's robustness under sudden load drops and partial shading conditions. A detailed comparative analysis with existing voltage control strategies is also presented to highlight the performance advantages of the proposed approach. The results provide valuable insights into the relative effectiveness of local and centralized voltage control methods, demonstrating that the proposed adaptive framework significantly improves voltage profiles and optimizes DER utilization in modern distribution networks.
S

SunView 深度解读

该优化自适应电压控制技术对阳光电源PowerTitan储能系统与SG系列逆变器协同运行具有重要应用价值。研究中的模型预测控制与在线学习机制可直接应用于ST系列储能变流器的控制算法优化,提升其动态无功响应能力。BESS与PV协同电压调控策略可集成至iSolarCloud平台,实现源网荷储协调控制。该方法对阳光电源构网型GFM控制技术形成有益补充,通过储能充放电与逆变器无功输出的实时协调,可增强大型地面电站并网稳定性,降低电压越限风险,提升系统在高渗透率场景下的电能质量管理能力,为ESS集成方案提供差异化竞争优势。