← 返回
考虑建筑热舒适性与净负荷季节性不确定性的云储能管理
Cloud Energy Storage Management Under Building Thermal Comfort and Net Load Seasonal Uncertainty Scenario
| 作者 | Vikash Kumar Saini · Ameena S. Al-Sumaiti · Rajesh Kumar · Srinivas Yelisetti · Gulshan Sharma |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年4月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 户用光伏 工商业光伏 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 共享储能系统 云储能架构 能源消耗数据 净需求误差预测 用户利用率 |
语言:
中文摘要
摘要:受建筑热环境、建筑内居住人数以及天气变化等因素影响,住宅和小型商业用户在应对光伏发电的可变性和极端负荷波动方面面临着日益严峻的挑战。智能电表后的共享储能系统提供了一种积极的解决方案,使这些用户在优化能源使用方面拥有更强的灵活性。本文在用户建筑热舒适度和光伏发电不确定性的场景下对云储能架构进行管理。利用ESP32微控制器和PZEM004 T电表组件开发了一个硬件模块,用于收集能耗数据。该硬件模块采用RS - 485通信接口协议。还制定了一种基于数据驱动的净需求误差预测策略,以最大程度降低包括室外温度在内的光伏发电和负荷不确定性的影响。采用粒子群优化算法对人体热舒适度设定点进行优化。运用基于电价的调度策略来提高用户的能源利用率。在不确定条件下结合印度电网电价的数值计算结果表明,与电网直供相比,云储能架构服务对用户而言更具经济性。
English Abstract
Residential and small commercial users face growing challenges with the variability in photovoltaic (PV) power generation and extreme load fluctuations, influenced by factors like building thermal conditions, the number of occupants inside buildings, and changing weather. A shared energy storage systems behind the smart meters present a proactive solution, offering these users enhanced flexibility to optimize their energy usage. In this paper, cloud energy storage architecture is managed under the user's building thermal comfort and PV power generation uncertainty scenario. A hardware module is developed using ESP32 microcontroller and PZEM004 T meter components to collect energy consumption data. The RS-485 communication interface protocol is used in the hardware module. A data-driven net demand error forecast-based strategy has also been developed to minimize the PV power and load uncertainty effect, including outdoor temperature. The particle swarm optimization algorithm optimizes the human thermal comfort set point. The price-based scheduling strategy is used to maximize user utilization. The numerical results with Indian grid price under uncertainty show that CES architecture service is more economical for users than grid-connected supply.
S
SunView 深度解读
该云储能协同管理技术对阳光电源ST系列储能系统与SG户用/工商业光伏逆变器的集成应用具有重要价值。研究中的等效热参数模型可融入iSolarCloud平台,实现建筑负荷柔性调控;季节性不确定性建模方法可优化PowerTitan储能系统的充放电策略,提升分布式光伏消纳率。建议将随机优化算法嵌入ST储能变流器的EMS能量管理模块,结合MPPT算法实现光储协同优化;热舒适性约束模型可拓展至充电桩产品,支持V2G场景下的用户侧需求响应。该技术可显著降低户用光伏系统的弃光率与电费成本,增强阳光电源在C&I工商业储能市场的竞争力。