← 返回
光伏发电技术 户用光伏 ★ 5.0

加州住宅光伏系统提前退役的环境与经济影响

Environmental and Economic Impacts of Early Residential Photovoltaic Retirement in California

作者 Mallika Kothar · Luyao Yuan · Preeti Nain · Annick Ancti
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 光伏发电技术
技术标签 户用光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 First study to quantify the impacts of early residential PV retirement in California.
语言:

中文摘要

摘要 光伏组件的设计使用寿命通常为25至30年,然而由于天气损害或效率下降导致的提前更换可能缩短其实际运行周期。本研究评估了在加州提前更换的住宅太阳能系统在其退役前是否已产生足够的电力,以抵消其制造过程中所消耗的经济成本、碳排放和能源投入。研究从2019年加州净电量计量数据库中收集了2003年至2019年间安装的住宅光伏系统的设计信息,包括倾角、方位角、组件型号及技术参数。利用组件规格书,结合系统顾问模型(System Advisor Model)估算各系统在其运行寿命期间累计产生的电量。进一步结合光伏系统的生命周期碳足迹、累计能源需求,以及加州和光伏制造国家的历史与未来电网电力结构,计算出光伏系统的碳排放、能源和经济回收期。结果显示,平均碳回收期为2.1年,能源回收期为1.7年。由于组件效率的持续提升,回收期总体呈下降趋势。然而,随着加州电网持续低碳化并增加可再生能源比例,未来的能源和碳回收期将有所上升。目前关于推动光伏系统提前(不足25–30年)更换的经济动因的研究十分有限,多数研究假设消费者会等到通过节电收益完全收回投资后才进行更换。而本研究的经济分析表明,在61个系统中,仅有1个系统在更换前通过发电获得的价值超过了系统成本,平均成本回收率仅为系统总成本的58%。这些发现凸显了进一步开展光伏系统更换行为研究的必要性,并需要制定相关政策,以优化光伏系统的可持续性和经济可行性。

English Abstract

Abstract Photovoltaic modules have an expected lifetime of 25–30 years, yet premature replacements due to weather damage or declining efficiency can shorten their operational period. This study evaluates whether residential solar systems replaced early in California generated sufficient electricity to offset their economic cost and the carbon and energy expended in their manufacturing. Information on photovoltaic system design, including tilt, azimuth, module model, and specifications, was gathered for residential modules installed between 2003 and 2019 from the 2019 California Net Energy Metering database. Module specifications sheets were used to estimate the cumulative electricity generated over the system’s lifetime using the System Advisor Model. The life cycle carbon footprint, cumulative energy demand of installed photovoltaic systems, and historical and future electricity grid mixes of California and photovoltaic manufacturing countries were used to calculate the photovoltaic carbon, energy, and economic payback times. The average carbon payback time was 2.1 years, and the energy payback time was 1.7 years. The payback times decrease over time due to improvements in module efficiency. However, as California’s electricity grid continues to get greener and include more renewables, energy and carbon payback times will increase. Little research exists on the economic motivations driving early (before 25–30 years) photovoltaic replacement. Most assume consumers wait until their investment is recouped through electricity savings. Our economic analysis shows that the value from electricity production was more than the cost of the system before replacement for only 1 of the 61 systems, and the average cost payback was 58 % of the system cost. These findings highlight the need for further research into photovoltaic replacement and policies to optimize the sustainability and economic viability of photovoltaic systems.
S

SunView 深度解读

该研究揭示加州户用光伏系统碳回收期2.1年、能量回收期1.7年,但经济回收期远超预期,仅58%系统成本被回收即提前退役。对阳光电源户用SG系列逆变器及iSolarCloud平台具重要启示:需通过MPPT优化技术延长组件高效运行期,利用预测性运维识别效率衰减趋势,结合ST储能系统提升自发自用比例加速经济回收。建议开发全生命周期经济模型,在电网清洁化背景下通过储能配置和智能能量管理优化投资回报率,降低过早退役风险,提升户用光伏系统可持续性。