← 返回
电动汽车驱动 多电平 ★ 4.0

基于时序卷积网络的电容电压预测与降低开关频率的MMC电压平衡控制

Temporal Convolutional Network-Based Capacitor Voltage Prediction With Reduced Switching Frequency for Voltage Balancing in MMC

作者 Jyoti Ranjan Dash · Prasanta Kumar Mohanty · Pramod Agarwal · Premalata Jena · Narayana Prasad Padhy
期刊 IEEE Transactions on Industry Applications
出版日期 2025年4月
技术分类 电动汽车驱动
技术标签 多电平
相关度评分 ★★★★ 4.0 / 5.0
关键词 模块化多电平换流器 子模块电容电压 两层式方法 电压预测 电压平衡
语言:

中文摘要

模块化多电平变换器(MMC)因其模块化、可扩展性和容错性,在高、中功率应用中得到了广泛应用。子模块(SM)电容电压的准确估计和控制对于确保电压平衡至关重要,但直接测量会增加复杂度和成本,而高开关频率会导致过多的损耗。本文提出了一种两阶段方法:首先,基于多层时间卷积网络(TCN)的模型预测子模块电容电压,无需直接测量;其次,一种电压平衡策略利用预测的电压来最小化开关频率。脉宽调制(PWM)以载波频率而非采样频率运行,减少了不必要的开关事件,降低了损耗。仿真和硬件实验在各种场景下验证了该方法的有效性,包括输入直流电压变化、子模块电容偏差和输出负载阻抗变化等。该模型的预测误差为0.32%,无需大量调试即可有效减小电容偏差。随着子模块数量的增加,电压预测精度保持稳定,在不平衡和平衡区域,10个子模块时的最大误差分别为1.5%和0.9%,20个子模块时的最大误差分别为1.5%和2.0%。这些结果表明,该方法能够准确估计电容电压并确保可靠的平衡,且具有适用于实时应用的高效可扩展性。该模型的均方根误差(RMSE)和平均绝对误差(MAE)近乎为零,显示出较高的预测精度。这些结果证实了该模型的鲁棒性、稳定性和可扩展性,使其适用于大规模模块化多电平变换器应用。

English Abstract

Modular Multilevel Converters (MMC) are widely employed in high- and medium-power applications due to their modularity, scalability, and fault tolerance. Accurate estimation and control of Sub-Module (SM) capacitor voltages are crucial for ensuring voltage balancing, yet direct sensing increases complexity and cost, while high switching frequency leads to excessive losses. This paper proposes a two-stage approach: first, a multi-layer Temporal Convolutional Network (TCN)-based model predicts SM capacitor voltages, eliminating the need for direct sensing; second, a voltage balancing strategy minimizes switching frequency using the predicted voltages. The Pulse-Width Modulation (PWM) operates at the carrier frequency rather than the sampling frequency, reducing unnecessary switching events and lowering losses. Simulation and hardware experiments validate the approach across various scenarios, including input DC voltage variations, SM capacitance deviations, and output load impedance changes. The model achieves a prediction error of 0.32%, effectively reducing capacitance deviation without extensive tuning. Voltage prediction accuracy remains stable as SM count increases, with maximum errors of 1.5% and 0.9% for 10 SMs, and 1.5% and 2.0% for 20 SMs in the unbalanced and balanced regions, respectively. These results demonstrate the methodology's effectiveness in accurately estimating capacitor voltages and ensuring reliable balancing, with efficient scalability for real-time applications. The model achieves near-zero RMSE and MAE values, demonstrating high prediction accuracy. These results confirm the model's robustness, stability, and scalability, making it suitable for large-scale MMC applications.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于时序卷积网络(TCN)的模块化多电平换流器(MMC)电容电压预测技术具有重要的战略价值。MMC拓扑结构在我司大功率光伏逆变器、储能变流器(PCS)以及中压传动系统中已有广泛应用,该技术针对子模块电容电压平衡这一核心痛点提供了创新解决方案。

技术价值方面,该方法通过TCN模型实现电容电压的无传感器预测,预测误差仅0.32%,可显著降低电压传感器数量,直接减少系统成本和复杂度。更关键的是,通过将PWM开关频率从采样频率降至载波频率,能够有效降低开关损耗,这对提升我司大功率产品的系统效率具有直接意义。在储能系统中,降低损耗意味着更高的往返效率和更长的设备寿命,直接增强产品竞争力。

从技术成熟度评估,该方案已完成仿真和硬件实验验证,在不同工况下(直流电压波动、电容偏差、负载变化)均表现出良好的鲁棒性。实验显示在10-20个子模块规模下,最大误差控制在2%以内,证明了其可扩展性。这与我司MW级储能变流器和大型光伏逆变器的实际应用场景高度契合。

然而,实际应用仍面临挑战:TCN模型的实时推理需要嵌入式计算资源,需评估在现有控制平台上的部署可行性;模型在极端工况和长期运行下的泛化能力需要进一步验证;此外,与现有控制算法的集成以及功能安全认证也是工程化的必经之路。建议启动预研项目,在储能PCS平台上进行技术验证,评估其在降本增效方面的实际收益。