← 返回
热电制冷器用于自适应个人热管理的数值建模与性能优化
Numerical modeling and design performance optimization of thermoelectric coolers for adaptive personal thermal management
| 作者 | Dhoni Nagaraj · Arshad Javed · Satish Kumar Dubey · Sanket Goel |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 342 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 多物理场耦合 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | COMSOL-based simulation analyzed [TEC](https://www.sciencedirect.com/topics/materials-science/thermoelectrics "Learn more about TEC from ScienceDirect's AI-generated Topic Pages") performance under varying parameters. |
语言:
中文摘要
摘要 热电制冷器(TECs)利用珀尔帖效应实现高效冷却,为热管理提供了一种紧凑且可靠的解决方案。本研究通过在COMSOL Multiphysics中进行数值建模,系统地研究了关键设计参数和运行参数对器件性能的影响。分析的关键输入参数包括热电臂高度、臂间间距、输入电流以及传热系数(h)。评估的性能指标包括制冷量(Qc)、功耗、性能系数(COP)和温差(ΔT),重点在于实现最大效率。采用先进的统计方法,包括实验设计(DOE)和方差分析(ANOVA),以量化这些参数的重要性并优化TEC的性能。结果表明,输入电流(I)和传热系数(h)是影响TEC性能最关键的参数。ANOVA结果显示,Qc的F值为269.44,功耗为977.99,COP为307.87,对应的p值均小于0.0001,证实了这些参数具有高度统计显著性。增加输入电流可使ΔT显著提升,从8.4 °C增至87 °C,但当电流超过0.2 A时,由于焦耳热过度产生,导致COP和Qc下降。传热系数对能量效率具有积极影响,其提高使COP从0.69提升至2.27,Qc从2.13 mW增至3.7 mW,同时降低了ΔT和功率输出。回归分析验证了数值模型的预测精度与稳健性,Qc、功耗和COP的R²值分别为0.9972、0.9991和0.9959。这些结果突显了该模型在优化TEC性能方面的可靠性,并揭示了输入电流和传热系数在实现高效率运行中的关键作用。
English Abstract
Abstract Thermoelectric coolers (TECs) offer a compact and reliable solution for thermal management by utilizing the Peltier effect for efficient cooling. This study investigated the influence of critical TEC design and operating parameters on device performance using numerical modeling in COMSOL Multiphysics. Key input parameters analysed include thermoelectric leg height, inter-leg spacing, current input, and heat transfer coefficient (h). The performance metrics evaluated are cooling capacity (Qc), power consumption, coefficient of performance (COP), and temperature difference (ΔT), with an emphasis on achieving maximum efficiency. Advanced statistical techniques, including Design of Experiments (DOE) and Analysis of Variance (ANOVA), were employed to quantify the significance of these parameters and optimize TEC performance. Results revealed that current input (I) and heat transfer coefficient (h) are the most critical parameters influencing TEC performance. ANOVA results showed high F-values for Qc (269.44), power consumption (977.99), and COP (307.87), with corresponding p-values < 0.0001, confirming the statistical significance of these parameters. Increasing the current input significantly enhanced the ΔT from 8.4 °C to 87 °C but diminished COP and Qc beyond 0.2 A due to excessive Joule heating . The heat transfer coefficient positively affected energy efficiency, improving COP from 0.69 to 2.27 and Qc from 2.13 mW to 3.7 mW while reducing ΔT and power output. Regression analysis validated the predictive accuracy and robustness of the numerical model, with R 2 values of 0.9972, 0.9991, and 0.9959 for Qc, power consumption, and COP, respectively. These findings highlight the reliability of the model in optimizing TEC performance and demonstrate the importance of current input and the heat transfer coefficient in achieving high-efficiency operation.
S
SunView 深度解读
该热电制冷器多物理场优化技术对阳光电源电动汽车驱动系统及储能热管理具有重要价值。研究中的电流-热耦合建模方法可直接应用于SiC功率器件散热设计,DOE/ANOVA统计优化思路可指导ST系列PCS和充电桩的热管理系统参数整定。特别是电流输入与传热系数对COP的协同影响分析,为PowerTitan储能系统和OBC充电机的液冷/风冷方案选型提供量化依据,助力实现功率密度提升与能效优化的平衡,支撑iSolarCloud平台的热失效预测算法开发。