← 返回
基于耦合CFD致动盘与叶素理论的导流罩风力机性能分析
Performance analysis of diffuser-augmented wind turbines through a CFD-based actuator disk method coupled with a Blade-Element approach
| 作者 | R.Bontemp · M.Mann |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 342 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 热仿真 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A CFD-based model for diffuser-augmented [wind turbines](https://www.sciencedirect.com/topics/earth-and-planetary-sciences/wind-turbine "Learn more about wind turbines from ScienceDirect's AI-generated Topic Pages") is developed and validated. |
语言:
中文摘要
摘要 由于导流罩增强型风力机具有提高功率输出的潜力,甚至可能超过贝茨-儒科夫斯基极限,因此正受到越来越多的关注,尤其适用于小规模应用。然而,目前仍缺乏针对此类装置的快速且可靠的分析方法,这在一定程度上阻碍了其广泛应用。本文首次将一种嵌入计算流体力学(CFD)代码中的耦合致动盘/叶素理论模型应用于导流罩增强型风力机的分析,并对所提出的方法进行了全面验证。流场通过雷诺平均纳维-斯托克斯(RANS)求解器获得,而风力机的影响则通过体积分力进行建模,这些力借助叶素方法迭代计算得到。本研究另一个创新之处在于,将该方法从开放式转子推广至管道式转子时,需要引入一种专门改进的叶尖修正因子模型,以准确反映叶片叶尖附近转子与导流罩之间的相互作用。所提出的模型在全球性能系数方面利用现有的实验数据进行了验证。对于两台风力机,局部流动参数(包括尾流速度)也成功地与更先进的叶片解析型雷诺平均纳维-斯托克斯求解器所得数据进行了对比。一个重要的新发现是,与预期相反,致动盘方法能够准确预测导流罩扩张段内的压力恢复过程,该区域存在导流罩边界层与叶尖涡之间强烈的相互作用。另一项新结果表明,在较小叶尖间隙情况下,叶片叶尖附近的受力呈现出先减小、后增大、再减小的趋势,这一现象与叶尖涡和导流罩之间的相互作用密切相关。这种行为无法通过简单修改传统开放式转子模型来再现,从而凸显出开发专用修正策略的必要性。
English Abstract
Abstract Due to their potential to enhance power output , potentially even exceeding the Betz–Joukowsky limit, diffuser-augmented wind turbines are gaining interest, especially for small-scale applications. However, the lack of fast and reliable analysis methods tailored to these devices still hinders their widespread adoption. This paper applies, for the first time, a coupled actuator-disk/Blade-Element-Theory model, embedded in a Computational Fluid Dynamics code, to the analysis of diffuser-augmented wind turbines , and includes a thorough validation of the proposed approach. The flow field is obtained through a Reynolds-Averaged Navier–Stokes solver, while turbine effects are modelled via body forces iteratively evaluated using a Blade-Element scheme. An additional original aspect is that porting this methodology from open to ducted rotors requires a tip-correction-factor model specifically adapted to account for rotor–duct interactions near the blade tips. The results are validated in terms of global performance coefficients using available experimental data. For two turbines, local flow quantities, including wake velocities, are successfully compared with data from a more advanced blade-resolved Reynolds-Averaged Navier–Stokes solver. A relevant new finding is that, contrary to expectations, the actuator disk approach accurately predicts the pressure recovery in the duct divergent part, where strong interactions between the duct boundary layer and tip vortices take place. A further new result is that, for small tip gaps, the blade-forces near the tip exhibit a decreasing–increasing–decreasing trend, associated with tip-vortex/duct interaction. This behaviour cannot be reproduced by simply adapting conventional models for open rotors, thus highlighting the need for a dedicated correction strategy.
S
SunView 深度解读
该扩散器增强风机的CFD-执行器盘耦合叶片元理论分析方法,对阳光电源风电变流器产品具有重要参考价值。其RANS流场求解与叶片元迭代体力模型的耦合思路,可借鉴至SG系列风电变流器的热仿真优化中:通过CFD模拟变流器内部散热器与风道的流场耦合,结合功率器件发热模型迭代计算温度场分布。特别是其针对叶尖-导管相互作用的修正因子策略,启发我们在三电平拓扑SiC/GaN器件散热设计中,需考虑散热片边缘与风道壁面的边界层干扰效应,提升PowerTitan储能系统PCS的热管理精度与可靠性预测能力。