← 返回
海上漂浮式光伏系统在运动状态下的发电性能:动态入射角与部分遮蔽效应的影响
Power performance of an offshore floating photovoltaic undergoing motions: Effects of dynamic incidence angle and partial shelter
| 作者 | Wenping Luo · Xiantao Zhanga · Lunbo Luod · Xinliang Tian · Xin Liab |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 343 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A power prediction model for offshore floating photovoltaic is proposed and validated. |
语言:
中文摘要
摘要 海上漂浮式光伏(OFPV)是一种新兴技术,可在更为严酷的海洋环境中捕获太阳能。安装在浮体上的光伏组件会受到波浪引起的显著随机运动影响,导致太阳光入射角持续变化。准确评估此类动态运动对发电量的影响,需要一个跨学科的建模框架,将高保真度水动力学模拟与详细的电气性能分析相结合。然而,现有大多数研究仅专注于其中一个方面,导致能够全面处理OFPV系统的模型较少。此外,运动对输出功率的影响尚不明确,这对OFPV浮体设计者而言是一个关键问题。为弥补上述不足,本文提出了一种针对OFPV的耦合功率预测模型,并从两个角度分析了动态运动的影响:入射角和部分遮蔽。该建模框架包含多个子模块,包括太阳轨迹计算、运动修正、电路电气模型、部分遮蔽修正以及水动力分析。随后选取一个四模块OFPV系统及其光伏面板布局进行分析。之后,所建立的模型通过现有的测试与实测数据进行了验证。在完成验证后,进一步对平台的运动响应、最优安装角度及其对输出功率的影响进行了详细研究。此外,还简要讨论了太阳轨迹对输出功率的影响。结果表明,随着运动幅度的增大,平均功率损失和功率波动均有所加剧。部分阴影造成的额外损失超出了仅由入射角变化引起的损失。由运动引起的平均功率损失小于1%,且在真实海况下由于大振幅运动持续时间较短,该损失更小;而最大瞬时损失可达3.4%。此外,安装角度的变化导致平均功率损失为5%,而在纬度和季节引起的太阳轨迹变化影响下,平均损失分别达到6.5%和25%。研究表明,在OFPV系统设计中,必须充分考虑由运动引起的瞬态扰动以及由太阳轨迹变化引起的平均功率损失。
English Abstract
Abstract Offshore floating photovoltaic (OFPV) is an emerging technology that captures solar energy in harsher oceanic environments. Photovoltaic panels mounted on floaters are subjected to significant wave-induced stochastic motions, leading to continuous variations in sunlight incidence angles. Accurate assessment of such dynamic motion impacts on power generation requires an interdisciplinary modelling framework that integrates high-fidelity hydrodynamic simulations with detailed electrical performance analysis. However, most existing studies only specialize in either part, leaving few models capable of addressing OFPV systems. Additionally, the influence of motion on power output remains unclear, which is a critical concern for OFPV floater designers. To address these gaps, this paper proposes a coupled power prediction model for OFPV, and the dynamic motion effect is analyzed from two perspectives: incidence angle and partial shelter. The modelling framework incorporates several submodules, including sun trajectory, motion correction, electrical circuit model, partial shelter correction and hydrodynamic analysis. After that, a four-module OFPV system is selected for analysis, along with its photovoltaic panel layout. Subsequently, the established model is validated against available test and measurement data. Following validation, detailed investigations are conducted on platform motion responses, optimal installation angles, and the resulting effects on power output. Further, the influence of sun trajectory on power output is briefly discussed. Results demonstrate that the power average loss and fluctuation are amplified with increasing motion amplitude. Partial shading contributes additional losses beyond those caused by incidence angle changes alone. The motion-induced average power loss is less than 1 % and it is smaller under real sea state due to the short duration of large-amplitude motions, whereas, the maximum transient loss is 3.4 %. Besides, installation angle variations make an average power loss of 5 % while it is 6.5 % and 25 % under latitude- and season-induced sun trajectory impacts. Investigation reveals that the motion-induced transient disturbance and sun trajectory-induced average loss to power output should be thoroughly considered in OFPV designs.
S
SunView 深度解读
该海上漂浮光伏研究对阳光电源SG系列逆变器及iSolarCloud平台具有重要价值。波浪运动导致入射角动态变化和局部遮挡,造成最大3.4%瞬态功率损失。建议在SG逆变器中强化多峰MPPT算法以应对遮挡工况,优化1500V系统的动态响应速度。iSolarCloud平台可集成姿态传感器数据,实现运动补偿预测和实时功率校正。研究揭示的安装角优化方法(5-25%功率差异)可指导海上光伏EPC项目设计,为拓展海洋新能源市场提供技术储备。