← 返回
电动汽车驱动
★ 5.0
基于Hf0.5Zr0.5O2共集成铁电逆变器的循环退化研究
Cycling Degradation in Hf0.5Zr0.5O2-Based Co-Integrated Ferroelectric Inverters
| 作者 | |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年1月 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 铁电场效应晶体管 铁电逆变器 共集成工艺 开关电压 退化机制 |
语言:
中文摘要
铁电场效应晶体管(FeFET)因其非易失性特性,是下一代低功耗存储器件的有力候选者。尽管FeFET的铁电特性已得到广泛研究,但目前尚未有关于与互补金属氧化物半导体(CMOS)单片共集成的FeFET的可靠性分析报道。在本研究中,通过单片共集成工艺在8英寸晶圆上制备了基于锆掺杂二氧化铪(HZO)的FeFET反相器。我们测量了FeFET反相器的工作特性,并分析了其相对于脉冲周期的退化机制。我们发现,FeFET反相器的开关电压会根据循环脉冲的数量和幅度而变化,这受到FeFET栅堆叠不同区域陷阱的影响。足以切换编程/擦除状态的脉冲会引发深度陷阱,从而使开关电压发生偏移。然而,脉冲周期数增加所导致的唤醒效应会抑制由陷阱引起的开关电压偏移。最后,基于对FeFET的电荷陷阱分析,解释了FeFET反相器工作特性退化的机制。
English Abstract
The ferroelectric field-effect transistor (FeFET) is a promising candidate for the next-generation low-power memory devices because of its nonvolatile characteristics. Although the ferroelectric properties of FeFETs have been widely studied, there have been no reported reliability analyses of monolithic co-integrated FeFETs with CMOS. In this study, a Zr-doped HfO2 (HZO)-based FeFET inverter was fabricated on an 8-in wafer via a monolithic co-integration process. We measured the operating characteristics of the FeFET inverter and analyzed its degradation mechanism relative to pulse cycles. We found that the switching voltage of the FeFET inverter varied depending on the number and amplitude of cycling pulses, which was influenced by traps at different regions of the FeFET gate-stack. Deep trapping was induced by a pulse large enough to switch the program/erase state, which shifted the switching voltage. However, the wake-up effect caused by increasing the number of pulse cycles suppressed the switching voltage shift due to trapping. Finally, based on the charge trapping analysis of the FeFET, the mechanism by which the operating characteristics of the FeFET inverter are degraded was explained.
S
SunView 深度解读
从阳光电源的业务视角来看,这项铁电场效应晶体管(FeFET)技术虽然聚焦于存储器领域,但其非易失性、低功耗特性与我们在光伏逆变器和储能系统中对高可靠性功率电子控制的需求存在潜在契合点。
该研究在8英寸晶圆上实现了HZO基FeFET与CMOS的单片集成,这对我们的逆变器控制芯片设计具有启发意义。当前光伏逆变器和储能变流器的控制系统需要外置存储器来保存运行参数、故障记录和MPPT算法数据,而FeFET的非易失性特征可实现控制逻辑与存储的深度集成,减少系统复杂度,提升在恶劣环境下的可靠性。特别是在大型地面电站和户用储能系统中,这种集成方案能够降低BOM成本并提高系统集成度。
然而,论文揭示的循环退化机制值得高度关注。研究发现开关电压随脉冲循环次数和幅值变化,这与栅堆栈中的电荷陷阱效应相关。虽然"唤醒效应"能部分抑制陷阱导致的退化,但在逆变器需要20-25年生命周期、数百万次开关循环的应用场景下,这种退化机制可能成为关键瓶颈。深陷阱效应导致的阈值电压漂移,在高温、高湿的光伏应用环境中可能被放大。
从技术成熟度评估,FeFET目前仍处于实验室到产业化的过渡阶段。对阳光电源而言,短期内可关注该技术在辅助控制电路中的应用潜力,长期则需跟踪其在汽车级可靠性标准下的验证进展,评估在下一代智能功率模块中的集成可行性。