← 返回
电动汽车驱动 宽禁带半导体 ★ 4.0

宽禁带半导体器件级热管理技术研究进展

Recent Advances in Device-Level Thermal Management Technologies for Wide Bandgap Semiconductor: A Review

作者
期刊 IEEE Transactions on Electron Devices
出版日期 2025年1月
技术分类 电动汽车驱动
技术标签 宽禁带半导体
相关度评分 ★★★★ 4.0 / 5.0
关键词 宽禁带半导体 超宽禁带半导体 热管理 氮化镓 氧化镓
语言:

中文摘要

与硅基器件相比,宽禁带(WBG)和超宽禁带(UWBG)半导体器件具有更高的击穿电压和更低的导通电阻,性能优越,使其在电能转换和通信领域极具竞争力。特别是,作为宽禁带半导体代表性材料之一的氮化镓(GaN)已发展到产业化阶段,而诸如氧化镓(Ga₂O₃)等新一代超宽禁带半导体在过去十年中成为电力电子应用领域的热门研究焦点。然而,这些先进半导体器件面临的主要挑战是热管理,尤其是在高功率应用中,热管理问题会导致器件电气性能严重下降和长期可靠性降低。因此,迫切需要有效的热管理技术。本文全面总结了宽禁带和超宽禁带半导体器件级热管理技术的最新进展,涵盖从器件内部结构优化到一系列增强热扩散的外部策略。这些策略包括通过器件架构优化增强内部热耗散、减薄衬底、采用高导热衬底键合与覆盖、倒装芯片封装、微通道冷却主动方法以及瞬态热管理技术等。最后,我们探讨了热管理技术目前存在的技术挑战、潜在解决方案和进一步的发展机遇,旨在解决关键的散热问题,推动宽禁带和超宽禁带半导体的进一步产业化。

English Abstract

Wide bandgap (WBG) and ultra-WBG (UWBG) semiconductor devices exhibit superior performance with higher breakdown voltage and lower on-resistance compared to Si-based devices, rendering them highly competitive in the field of electric energy conversion and communication. Especially, GaN, as one of the representative materials in WBG semiconductors, has progressed to the stage of industrial realization, and the new generation of UWBG semiconductors such as Ga2O3 has become a popular research focus in the last decade for power electronics applications. However, the primary challenge faced by these advanced semiconductor devices is thermal management, particularly in high-power application, which leads to a serious degradation in electrical performance and long-term reliability. Therefore, there is an urgent need for effective thermal management technologies. This review comprehensively summarizes recent advances in device-level thermal management techniques for WBG and UWBG semiconductors, ranging from internal device structure optimization to a series of external strategies for enhancing thermal diffusion. These strategies include enhancing the internal thermal dissipation through device architecture optimization, substrate thinning, high thermal conductivity substrate bonding and coverage, flip chip package, active method of microchannel cooling, and transient thermal management techniques. Finally, we discuss the existing technical challenges, potential solutions, and further development opportunities in thermal management techniques, with the aim of addressing the critical thermal dissipation issue to facilitate the further industrialization of WBG and UWBG semiconductors.
S

SunView 深度解读

作为光伏逆变器和储能系统的核心供应商,阳光电源产品的功率密度提升与可靠性保障高度依赖于宽禁带半导体器件的热管理技术突破。该综述系统梳理的GaN、Ga2O3等宽禁带及超宽禁带半导体热管理技术,对我司新一代高功率密度逆变器和储能变流器的研发具有重要指导意义。

从业务价值看,这些器件级热管理技术直接关系到产品竞争力的三个核心维度:首先,通过器件结构优化、高导热基板键合等内部散热增强技术,可显著降低功率模块的热阻,支撑我司实现更高的开关频率和电流密度,进而缩小逆变器体积、降低系统成本;其次,微通道主动冷却等先进散热方案能够应对户外高温、高海拔等极端工况,提升产品在全球不同气候区的适应性;第三,瞬态热管理技术对应对电网扰动、功率突变等场景下的器件可靠性至关重要,这直接影响储能系统的循环寿命和质保成本。

技术成熟度方面,GaN器件的热管理技术已进入工业化阶段,可立即应用于中小功率产品线;而Ga2O3等超宽禁带材料仍处于研发阶段,但其超高击穿电压特性为未来超高压直流系统提供了技术储备。主要挑战在于高导热基板的成本控制、倒装封装的工艺复杂度以及主动冷却系统的可靠性验证。建议我司与上游半导体厂商建立联合实验室,针对1500V及以上电压等级的应用场景,开展定制化热管理方案的协同开发,抢占下一代高效能源转换设备的技术制高点。