← 返回
高超声速飞行器发动机热光伏系统冷却与发电性能评估
Cooling and power generation performance evaluation of thermophotovoltaic system for hypersonic vehicle engines
语言:
中文摘要
摘要 由于高超声速飞行器具有极高的冷却和能源需求,其发展面临巨大挑战。为应对这一挑战,本文提出了一种用于高超声速飞行器发动机的热光伏发电系统,该系统可在提供热防护的同时实现电能生成。热光伏电池安装在燃烧室冷却通道的壁面上,燃料流经通道以对电池进行冷却。高温辐射体发射的光子通过滤光器筛选后到达电池并产生电能。建立了包含燃烧室、热光伏器件及冷却通道在内的传热与发电耦合模型,并通过迭代求解直至满足能量守恒条件。分析了不同来流马赫数、燃料流量、入口温度以及起始位置对系统冷却与发电性能的影响。所提出的热光伏发电系统在燃烧室长度为3.12 m时使燃烧室质量减轻了2.43%。在布置热光伏电池的燃烧室段,壁面热流可降低近2/3,在马赫数7条件下总热防护需求减少约1 MW。发电密度曲线峰值达到58 kW/m²,在来流马赫数6、燃料流量6 kg/s、燃料入口温度263.15 K的工况下可输出175.75 kW的电能。系统的功率质量比为0.88,净热电转换效率达到10.5%。本研究为高飞行马赫数下高超声速飞行器的热能-电能转换技术提供了参考依据。
English Abstract
Abstract The development of hypersonic vehicles is challenging owing to their high cooling and power demands. To address this challenge, this paper proposes a thermophotovoltaic power-generation system for hypersonic vehicle engines that can generate power while providing thermal protection . Thermophotovoltaic cells are installed on the wall of the combustor cooling channels, through which the fuel flows to cool the cells. The photons emitted by the high-temperature emitter are filtered through a filter and reach the cell to generate electricity. A heat transfer and power generation model, including the combustor, thermophotovoltaics, and cooling channels, was established and iteratively solved until energy conservation was satisfied. The impact of different incoming Mach numbers, fuel flow rates, inlet temperatures, and starting positions on the cooling and power generation performance of the system was analyzed. The proposed thermophotovoltaic power-generation system reduced the weight of the combustor by 2.43 % at a combustor length of 3.12 m. The heat flux on the combustor wall in the section where thermophotovoltaics are arranged can be reduced by nearly 2/3, with the total thermal protection demand reduced by about 1 MW at Ma 7. The peak of the power generation density curve reached 58 kW/m 2 , generating 175.75 kW of electricity at Ma6 incoming flow, a 6 kg/s fuel flow rate, and a 263.15 K fuel inlet temperature. The power-to-weight ratio was 0.88, and the net heat-to-power conversion efficiency of the system reached 10.5 %. This research provides a reference for heat-to-power conversion technology of hypersonic vehicles at high flight Mach numbers.
S
SunView 深度解读
该热光伏发电技术为阳光电源高功率密度储能系统提供创新思路。其58kW/m²的发电密度和10.5%热电转换效率,可启发ST系列PCS在极端温度环境下的热管理优化设计。燃料冷却通道与光伏电池耦合的架构,对PowerTitan储能系统的液冷技术具有借鉴意义,特别是在数据中心等高热流密度场景。滤波器选频技术可应用于SG逆变器的电磁兼容设计。该系统0.88功重比的实现方式,为阳光电源轻量化储能产品和充电桩散热方案提供参考,助力提升iSolarCloud平台的热管理预测算法精度。