← 返回
基于金属氢化物的家用氢能储存系统的高效热管理解决方案
High-efficiency thermal management solutions for metal hydride-based residential hydrogen storage systems
| 作者 | Huan Yea · Fengxiang Chena · Yaowang Peia · Zhipeng Houb · Bo Zhang · Haowen Hua |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 344 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 户用光伏 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Metal hydrides offer safer conditions for residential hydrogen storage. |
语言:
中文摘要
摘要 金属氢化物(MH)作为一种低压氢气储存介质,其固有的压力特性使其特别适用于家庭应用。然而,与直接电能储存方法相比,氢气储存路径的能量往返效率较低,凸显了开发有效废热回收策略的迫切需求。本研究旨在提升家用氢能储存系统的整体效率。首先建立了一个针对基于金属氢化物的氢能储存系统的集成热管理系统(ITMS)模型,并对水电解、金属氢化物及燃料电池部分进行了模型验证。随后分析了氢气吸收与解吸过程,通过联合调控流量、压力和温度以优化系统性能。评估并比较了电力-氢能-电力(P2H2P)和热电联产(CHP)两种运行模式的效率。结果表明,即使在长时间太阳辐照度较低的情况下(例如连续四个阴天),该ITMS仍可完全满足住宅的电力与热力需求,在P2H2P模式下实现47.0%的整体效率,在CHP模式下达到87.5%的效率。进一步分析发现,当氢气储存水平(Level-of-Hydrogen)超过95%或低于5%时,对金属氢化物温度控制的有效性显著下降。在典型运行条件下,系统保持一定的富余氢气储存容量以支持长期运行,此时P2H2P和CHP模式的效率分别可达46.4%和89.1%。这些研究成果为推进住宅环境中基于氢气的储能技术发展提供了有价值的理论依据与实践指导。
English Abstract
Abstract Metal hydride (MH) functions as a low-pressure hydrogen storage medium, with its inherent pressure characteristics making it particularly well-suited for residential applications. However, the hydrogen storage pathway suffers from lower round-trip efficiency compared to direct electrical storage methods, highlighting the urgent need for effective waste heat recovery strategies. This study aims to enhance the overall efficiency of residential hydrogen storage systems. An integrated thermal management system (ITMS) model for MH-based hydrogen energy storage is first developed, with validation carried out for the water electrolysis, MH, and fuel cell. The hydrogen absorption and desorption processes are then analyzed, with flow rate, pressure, and temperature jointly regulated to optimize performance. The efficiencies of both Power-to-Hydrogen-to-Power (P2H2P) and Combined Heat and Power (CHP) modes are evaluated and compared. Results demonstrate that the ITMS can fully satisfy residential power and heat demands, even under extended periods of low solar irradiance (e.g., four consecutive overcast days), achieving overall efficiencies of 47.0% for P2H2P and 87.5% for CHP. Further analysis reveals that the effectiveness of MH temperature control declines significantly when the Level-of-Hydrogen exceeds 95% or drops below 5%. Under typical operating conditions, the system maintains surplus hydrogen storage capacity to support long-term operation, with P2H2P and CHP efficiencies reaching 46.4% and 89.1%, respectively. These findings offer valuable insights for advancing hydrogen-based energy storage technologies in residential settings.
S
SunView 深度解读
该金属氢化物储能热管理技术对阳光电源户用储能系统具有重要参考价值。研究中P2H2P模式47%效率与CHP模式87.5%综合效率的对比,为ST系列PCS与户用光伏系统的热电联供方案提供优化思路。特别是Level-of-Hydrogen在5%-95%区间的温度控制策略,可借鉴应用于PowerTitan储能系统的SOC管理算法优化。结合iSolarCloud平台的预测性维护能力,可实现多能互补场景下的能量流与热流协同调度,提升户用储能系统在连续阴雨天等极端工况下的供能可靠性,推动氢储能与电化学储能的混合应用探索。