← 返回
光伏发电技术 储能系统 ★ 4.0

在集成吸收式与朗肯循环的新型太阳能三联产系统中实现超高性能系数

Achieving ultra-high coefficient of performance in a novel solar-assisted trigeneration system integrating absorption and Rankine cycles

作者 Asli Tiktas · Arif Hepbasli · Huseyin Gunerhan
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 346 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 Cooling performance exceeded conventional systems with a coefficient value of 7.03.
语言:

中文摘要

摘要 本文开发并从热力学角度评估了一种新型太阳能驱动的三联产系统,该系统将吸收式热变换器(AHT)、朗肯循环(RC)和吸收式制冷循环(ACC)集成于统一构型中。其创新性不仅体现在采用AHT驱动RC——这一集成方式本身较为罕见,更关键的是采用了全热力循环架构,两个吸收子系统共享单一工质对(LiBr–H₂O),同时驱动基于蒸汽的朗肯子系统。这种高度耦合的单回路设计实现了内部热能的级联利用,并消除了对外部独立工质、辅助加热源或中间换热器的需求,而传统混合或级联系统则存在以下问题:(i)依赖多个工质回路分别提供动力与制冷;(ii)需要化石燃料驱动的辅助加热器来运行RC;或(iii)由于子系统间流体-流体换热导致较大的不可逆损失。仿真结果表明,系统可获得457.90 kW的净电功率输出、74.40%的整体㶲效率以及56.30%的RC能量转换效率。制冷性能系数(COP)达到7.03,显著优于传统的单效吸收式系统。整个系统完全由平板太阳能集热器(FPSCs)供能,无需任何基于化石燃料的辅助能源。通过与实验研究进行部件级对比,对系统进行了全面验证,涵盖压降、内部不可逆性以及工质物性对性能指标的影响。此外,还开展了详细的热经济性评估。总投资成本约为854万美元,投资回收期(PP)仅为2.56年,内部收益率(IRR)达24.43%。电力、制冷和供热的平准化成本分别为0.20美元/kWh、0.024美元/kWh和0.024美元/kWh。与文献中的基准系统相比,所提系统在热力学和经济性方面均表现出更优性能,尤其在制冷和供热输出方面优势明显。本研究提出了一种低品位可再生能源高效利用的新设计范式,为高效率多联产提供了可扩展的解决方案,并为未来可持续能源系统构建了实用框架。

English Abstract

Abstract A novel solar-driven trigeneration system was developed and thermodynamically assessed, integrating an absorption heat transformer (AHT), a Rankine cycle (RC), and an absorption cooling cycle (ACC) into a unified configuration. The innovation lay not only in the use of an AHT to power the RC—an uncommon integration in itself—but more significantly, in the full thermodynamic loop architecture that employed a single working fluid pair (LiBr–H 2 O) shared by both absorption subsystemswhile also driving a steam-based Rankine subsystem. This tightly coupled single-loop design enabled internal thermal cascading and eliminated the need for separate working fluids, auxiliary heating, or intermediate heat exchangers— unlike conventional hybrid or cascade systems, which (i) rely on multiple working fluid loops for power and cooling, (ii) require fossil-fueled auxiliary heaters to drive RCs, or (iii) incur high irreversibility losses due to fluid-to-fluid heat exchange between subsystems. Based on the simulation results, a net electrical power output of 457.90 kW, an overall exergetic efficiency of 74.40 %, and a RC energy efficiency of 56.30 % were obtained. The cooling coefficient of performance (COP) reached 7.03, significantly outperforming conventional single-effect absorption systems. The system was fully powered by flat-plate solar collectors (FPSCs), without requiring any fossil-based auxiliary energy. A comprehensive validation was performed using component-level comparisons with experimental studies, covering pressure drops, internal irreversibility, and the influence of working fluid properties on performance metrics. Additionally, detailed thermo-economic assessments were carried out. The total investment cost was approximately US$8.54 million, with a remarkably short payback period (PP) of 2.56 years and an internal rate of return (IRR) of 24.43 %. Levelized costs of electricity, cooling, and heating were calculated as US$0.20/kWh, US$0.024/kWh, and US$0.024/kWh, respectively. Comparative analysis against literature benchmarks proven that the proposed system offered superior thermodynamic and economic performance, especially in cooling and heating outputs. This study showed a new design paradigm for low-grade renewable energy utilization, providing both a scalable solution for high efficiency multigeneration and a practical framework for future sustainable energy systems.
S

SunView 深度解读

该太阳能三联供系统展示了超高COP(7.03)的冷热电联产技术,对阳光电源ST系列储能系统与SG光伏逆变器的协同优化具有启发意义。其单一工作流体循环架构和内部热级联设计,可借鉴于PowerTitan储能热管理系统,通过余热回收提升系统综合效率。74.40%的火用效率验证了可再生能源深度利用潜力,为iSolarCloud平台增加多能互补优化算法提供理论支撑,助力工商业用户实现2.56年投资回收期的经济性目标。