← 返回
Ag/Sn/Cu 瞬时液相连接过程中界面反应的研究
Study on the interfacial reactions for Ag/Sn/Cu TLP during transient liquid phase soldering process
| 作者 | He Diao · Jiahao Liu · Xiangxiang Zhong · Fengyi Wang · Lijin Qiu · Yini Chen · Hongtao Chen |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 瞬时液相连接 金属间化合物 界面反应 TLP过程 Cu/Sn/Ag体系 |
语言:
中文摘要
瞬时液相(TLP)连接是一种有前景的电子封装技术,可满足由于电力电子器件功率密度不断增加而带来的高温工作需求。越来越多的功率芯片采用Ni/Ag金属化,而直接键合铜的表面金属为Cu。然而,Cu/Sn/Ag体系中的界面反应研究较少。为了探究Cu/Sn/Ag体系中焊料与基板之间的金属间化合物反应动力学,本研究考察了不同回流温度(250–350 °C)和时间(30–960 s)对三种不同TLP体系(Cu/Sn、Ag/Sn和Cu/Sn/Ag)界面微观结构演变的影响,以及两种金属间化合物(IMCs)Cu6Sn5和Ag3Sn的生长动力学。结果表明,在Cu/Sn/Ag TLP中,Cu6Sn5的激活能相较于Cu/Sn TLP提高了42.8%,Ag3Sn的激活能相较于Ag/Sn TLP提高了34.1%。在Ag/Sn/Cu TLP的固-液过程中,来自Ag基板侧的Ag原子会穿过熔融Sn层,在Cu基板侧Cu6Sn5金属间化合物表面形成Ag3Sn;同时,来自Cu基板侧的Cu原子也会扩散至Ag基板侧,在Ag3Sn金属间化合物表面形成Cu6Sn5。界面处异质金属间化合物阻碍了基板原子扩散的晶界/熔融通道,从而提高了激活能并抑制了其生长。
English Abstract
Transient liquid phase (TLP) bonding is a promising electronic packaging technology to satisfy the needs of operating at high temperatures due to the increasing power density of power electronic devices. More and more power chips are finished with Ni/Ag metallization, while the top metal is Cu in direct bonded copper. However, interfacial reactions in Cu/Sn/Ag system were rarely studied. In order to explore the intermetallic reaction kinetics between solder and substrate in Cu/Sn/Ag system, this study investigated the effect of different reflow temperatures (250–350 °C) and time (30–960 s) on the microstructure evolution of the interfaces of three different TLP systems (Cu/Sn, Ag/Sn and Cu/Sn/Ag), and the growth kinetics of two intermetallic compounds (IMCs) Cu 6 Sn 5 and Ag 3 Sn. The results indicate that the activation energy of Cu 6 Sn 5 in Cu/Sn/Ag TLP increases by 42.8% compared to Cu/Sn TLP, and the activation energy of Ag 3 Sn increases by 34.1% compared to Ag/Sn TLP. During the solid–liquid process of Ag/Sn/Cu TLP, Ag atoms from the Ag substrate side will cross through the molten Sn layer to form Ag 3 Sn on the surface of Cu 6 Sn 5 IMCs on the Cu substrate side. Meanwhile, Cu atoms from the Cu substrate side will reach Ag substrate side to form Cu 6 Sn 5 on the surface of Ag 3 Sn IMCs. Heterogeneous IMCs at the interface hinder the grain boundary/melting channel for the diffusion of substrate atoms, increasing the activation energy and inhibiting their growth.
S
SunView 深度解读
该TLP焊接技术对阳光电源储能系统ST系列PCS及PowerTitan产品具有重要应用价值。研究揭示Cu/Sn/Ag体系中IMC生长动力学,可优化功率模块封装可靠性。异质IMC界面抑制扩散、提升激活能的机制,为SiC/GaN器件高温封装提供理论指导。在大功率储能变流器中,该技术可提升IGBT/SiC模块热循环寿命,降低接触热阻,支撑三电平拓扑在高功率密度场景的可靠运行,对充电桩OBC等高温应用同样适用。