← 返回
通过掺杂策略增强水热法制备的钡掺杂CoSnO3的电容特性
Enhancing the capacitive features of hydrothermally developed Ba-doped CoSnO3 through doping strategy
| 作者 | Not Applicable. |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | SiC器件 DAB |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Ba掺杂 钙钛矿型钴锡氧化物 超级电容器 比电容 循环稳定性 |
语言:
中文摘要
污染和能源危机是当前面临的严重问题,迫切需要可持续且经济的储能技术。在本研究中,采用水热法合成了钡掺杂的钙钛矿型钴锡氧化物(CoSnO3),并将其用作超级电容器的电荷存储介质。通过Brunauer-Emmett-Teller(BET)分析、X射线衍射(XRD)技术、恒电流充放电(GCD)以及循环伏安法(CV)分别对样品的物理和电化学性能进行了研究。由钡掺杂CoSnO3构成的电极表现出明显的法拉第行为,在1 A/g的电流密度下实现了1006.21 F/g的比电容,而未掺杂的纯CoSnO3则仅表现出较低的比电容(471.52 F/g)。根据Nyquist图得出,钡掺杂CoSnO3的电荷转移电阻(Rct)为0.65 Ω。CoSnO3在实际应用中面临严重的元素污染问题,因其循环稳定性不足,限制了其作为超级电容器活性电极材料的应用。为此,本研究建立了一种掺杂技术以克服上述缺陷,并采用水热法成功制备了钡掺杂的CoSnO3。掺杂优化了OH−离子在材料界面的吸附行为,从而显著提升了材料的电化学性能。钡掺杂CoSnO3所展现出的优异电化学性能表明,其在超级电容器应用方面具有广阔的应用前景。
English Abstract
The pollution and energy crises are serious problems, there is an immediate desire for sustainable and affordable energy-storing technology. In this work, Ba-doped perovskite cobalt tin oxide (CoSnO 3 ) was produced via a hydrothermal procedure for usage as a supercapacitor charge storage medium. Physical and electrochemical characteristics of samples were studies through Brunauer Emmett Teller (BET) analysis, X-ray diffraction (XRD) technique, galvanostatic charge/discharge (GCD) and cyclic voltammetry (CV) study, respectively. Electrodes composed of Ba-doped CoSnO 3 demonstrated faradaic behavior, achieving a specific capacitance of 1006.21 F/g over current density (C d ) of 1 A/g in contrast the pure CoSnO 3 revealed a lower specific capacitance (471.52 F/g). The charge transfer resistance (R ct ) of Ba-doped CoSnO 3 measured at 0.65 Ω was derived from the Nyquist plot. CoSnO 3 encountered considerable challenges with elemental contamination, limiting its application as active electrode materials in supercapacitors because of insufficient cycling stabilities. A doping technique was established to deal with these drawbacks and a hydrothermal process was utilized to develop Ba-doped CoSnO 3 . Doping optimise the adsorption of OH − ions on the material interface, hence accelerating electrochemical properties. The improved electrochemical performance of Ba-doped CoSnO 3 revealed that it has potential to be utilized for supercpacitor applications.
S
SunView 深度解读
该钡掺杂钴锡氧化物超级电容器技术对阳光电源储能系统具有重要参考价值。研究显示掺杂策略可将比电容从471.52 F/g提升至1006.21 F/g,充电转移电阻降至0.65Ω,这为ST系列PCS和PowerTitan储能系统的混合储能架构提供了新思路。超级电容器的高功率密度特性可与锂电池互补,优化储能系统的瞬态响应能力和循环寿命。该材料的法拉第赝电容特性及低电荷转移电阻,可应用于充电桩的功率缓冲模块,提升快充场景下的功率调节性能,为iSolarCloud平台的储能优化算法提供硬件支撑。