← 返回
储能系统技术 储能系统 ★ 5.0

合成条件对镍铁氧体纳米颗粒形貌、表面化学及锂离子电池应用中电化学性能的影响

Effect of synthesis conditions on morphology, surface chemistry and electrochemical performance of nickel ferrite nanoparticles for lithium-ion battery applications

语言:

中文摘要

在寻找用于能量转换和存储器件的高效高科技材料的过程中,尖晶石结构的镍铁氧体(NiFe2O4)被认为是一种有前景的锂离子电池(LIBs)负极材料。然而,不同形貌和表面性质的NiFe2O4纳米颗粒对电池性能的影响却鲜有研究。为了理解不同形貌和表面性质对锂离子存储性能的影响,本文通过四种不同的合成条件制备了NiFe2O4纳米颗粒:NFO-S、NFO-U、NFO-G和NFO-C。通过XRD、FTIR和拉曼光谱证实了多晶反尖晶石NiFe2O4的形成。利用场发射扫描电子显微镜(FESEM)研究了所得样品的形貌,发现所采用的四种不同合成条件使我们获得了具有四种不同形貌的NiFe2O4。样品的表面化学、比表面积和孔隙率分别通过XPS和BET进行表征。通过组装锂离子半电池研究了四种NiFe2O4样品作为负极材料的电化学性能。由无表面活性剂合成条件(NFO-S)获得的NiFe2O4样品在100 mA/g的电流密度下表现出较高的初始放电和充电容量,分别为2258 mAh/g和1815 mAh/g。即使在100次循环后,NFO-S在100 mA/g电流密度下的放电容量仍达到116 mAh/g,优于本文研究的其他样品。NFO-S样品表现出较高容量的原因归因于其较大的比表面积(40.8 m²/g)和孔体积(0.190 cm³/g)。而使用阳离子CTAB表面活性剂制备的NiFe2O4样品(NFO-C)则表现出更好的循环稳定性,在第100次循环时库仑效率稳定在98.5%,这主要归因于其纳米立方体形貌以及较低的比表面积(16.1 m²/g)和孔体积(0.087 cm³/g)。

English Abstract

In the search for effective high-tech materials for energy conversion and storage devices, spinel-structured nickel ferrite (NiFe 2 O 4 ) has been identified as a promising anode material for lithium-ion batteries (LIBs). However, the influence of different morphologies and surface properties of NiFe 2 O 4 nanoparticles on battery performance is hardly addressed. To understand the effect of different morphologies and surface properties on the lithium-ion storage performance, NiFe 2 O 4 nanoparticles were synthesized through four different synthesis conditions: NFO-S, NFO-U, NFO-G, and NFO-C. The formation of polycrystalline inverse spinel NiFe 2 O 4 was confirmed through XRD, FTIR, and Raman spectroscopy. The morphologies of the obtained samples were studied using FESEM, and it was found that the four different synthesis conditions employed here enabled us to obtain NiFe 2 O 4 with four different morphologies. The surface chemistry, surface area and porosity of the NiFe 2 O 4 samples were respectively characterized using XPS and BET. The electrochemical performance of the four NiFe 2 O 4 samples as anode material was studied by fabricating lithium-ion half-cells. NiFe 2 O 4 sample obtained from surfactant-free synthesis condition (NFO-S) displayed a high initial discharge and charge capacity of 2258 mAh/g and 1815 mAh/g, respectively at the current density of 100 mA/g. Even after 100 cycles, NFO-S showed a better discharge capacity of 116 mAh/g at the current density of 100 mA/g, compared to the other samples studied here. The observed higher capacity of the NFO-S sample is attributed to the higher surface area (40.8 m 2 /g) and pore volume (0.190 cm 3 /g). The NiFe 2 O 4 sample prepared with cationic CTAB surfactant (NFO-C) showed better cyclic stability with a stable coulombic efficiency of 98.5% at the 100th cycle, mainly attributed to its nanocube morphology with lower surface area (16.1 m 2 /g) and pore volume (0.087 cm 3 /g).
S

SunView 深度解读

该镍铁氧体纳米材料研究对阳光电源储能系统具有前瞻价值。研究揭示形貌与表面特性对锂电池性能的关键影响:高比表面积(40.8m²/g)材料可提升容量,而纳米立方体结构能增强循环稳定性(98.5%库仑效率)。这为PowerTitan储能系统和ST系列PCS的电池选型提供优化依据,通过调控电极材料微观结构可平衡能量密度与循环寿命,助力提升储能系统全生命周期经济性。该材料合成工艺的可控性也为未来电池技术迭代提供研发方向。