← 返回
最大化太阳能光伏能量效率:基于遮阴效应的MPPT技术研究
Maximizing solar photovoltaic energy efficiency: MPPT techniques investigation based on shading effects
语言:
中文摘要
摘要 本文进行了一项全面的研究,旨在深入理解并优化光伏(PV)发电系统的运行特性。研究重点探讨了最大功率点跟踪(MPPT)技术,该技术通过在太阳辐照度和温度等变化条件下进行动态调节,以优化光伏发电机的能量输出,确保其始终运行在最高效率状态。此外,考虑到阴影效应对能量产出及整体性能可能产生的显著影响,本研究还结合优化型MPPT算法,对光照区域上的阴影效应进行了详细分析。研究采用了先进的建模与仿真技术,特别强调使用Levenberg-Marquardt方法进行参数估计,该方法用于将数学模型拟合至实验获得的光伏发电机数据,并提取相关关键参数。同时,研究利用MATLAB中的“曲线拟合工具箱”(Curve Fitting Toolbox)方法,对实验测得的I-V和P-V特性数据进行数学模型拟合。研究采用一种工业级多晶硅光伏组件,并将仿真结果与实验数据进行了对比验证。分析的一个重要方面是考察部分遮阴对光伏发电机的影响。结果表明,部分遮阴对光伏系统构成重大挑战,会导致输出功率显著下降。本文介绍了多种最大功率点跟踪(MPPT)技术,并对其能力与性能指标进行了分析。研究方法结合了仿真数据与实验数据,以深入理解光伏组件在不同遮阴条件下的运行行为。此外,本研究提出了一种优化的系统配置方案以及先进的MPPT算法,以提升在部分遮阴情况下的系统性能。该优化配置不仅提高了输出功率,还通过缓解由遮阴引起的热斑效应以及潜在的组件故障等问题,增强了系统的整体效率与可靠性。本研究所提出的发现与策略可被调整并应用于多种类型的光伏组件。
English Abstract
Abstract This article presents a comprehensive study focused on understanding and optimizing the behavior of a photovoltaic (PV) generator. The study explores Maximum Power Point Tracking (MPPT), a critical technique used to optimize the energy output of a PV generator by dynamically adjusting under varying conditions of solar irradiance and temperature, ensuring that the PV generator operates at its most efficient level. By also accounting for shading effects, which can significantly impact energy production and overall performance, this research includes a detailed analysis of the shading effects on the illuminated area based on optimization-MPPT algorithms. Advanced modeling and simulation techniques are employed, with a particular emphasis on the Levenberg-Marquardt method for parameter estimation. This method is used to fit mathematical models to experimental PV generator data and extract relevant parameters. Additionally, the study leverages the “Curve Fitting Toolbox” method in MATLAB to fit mathematical models for experimental I-V and P-V data. The investigation utilizes an industrial polycrystalline silicon PV module and compares simulated results with experimental data. One significant aspect of the analysis is the examination of partial shading’s impact on the PV generator. The results highlighted that partial shading poses a substantial challenge to the PV system, leading to a notable reduction in power output. The study presents various techniques for Maximum Power Point Tracking (MPPT) and analyzes their capabilities and performance metrics. The research methodology involves a combination of simulated and experimental data to understand how PV panels behave under different shading conditions. Furthermore, the study proposes an optimized configuration and advanced MPPT algorithms to enhance system performance in the presence of partial shading. The optimized setup not only increases power output but also enhances overall system efficiency and reliability by mitigating issues such as shading-induced hotspots and potential panel failures. The findings and strategies outlined in this study could be adapted and applied to various types of PV modules.
S
SunView 深度解读
该MPPT优化研究对阳光电源SG系列光伏逆变器具有重要应用价值。文中基于Levenberg-Marquardt算法的参数辨识方法可增强我司多路MPPT技术在复杂遮挡场景下的追踪精度,特别适用于1500V高压系统。部分遮挡导致的功率损失分析为iSolarCloud平台的智能诊断功能提供理论支撑,可实现热斑预警与失配检测。研究中的优化配置策略可融入SG逆变器的动态扫描算法,提升组串式方案在山地、屋顶等非理想安装环境的发电效率,并为储能侧ST系列PCS的源网协同控制提供输入优化依据。