← 返回
利用冷却方法提高光伏组件的产电性能:约旦地区的实验与模拟研究
Enhancing the productivity of PV module using cooling method: Experimental and simulation investigation in Jordan
| 作者 | Hamzah M.Zureiga · Bashar R.Qawasme |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 287 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Experiments were conducted over six consecutive days and results were compared with TRNSYS software. |
语言:
中文摘要
摘要 光伏(PV)组件的效率随着组件温度的升高而降低。对光伏面板进行冷却可通过减少电阻损耗、改善载流子迁移率、降低热应力以及提高填充因子来提升其效率。本文提出一种强制水循环冷却方法,通过降低光伏组件的温度,从而提高其发电性能。该方法在光伏组件背面安装铜管换热器(HX),并采用强制水循环方式进行散热。这种冷却方式结构简单、成本低廉、无需额外能耗,是一种高效且适用于大规模电站的被动式冷却方案。实验采用两个相同的光伏组件,其中一个进行冷却,另一个作为对照,在约旦杰拉什市的实际气象条件下开展对比研究,以评估冷却系统对组件性能的影响。实验连续进行了六天,并将结果与TRNSYS软件的模拟数据进行对比分析。研究发现,所提出的冷却方法使光伏组件平均温度降低了4.62°C,降幅达9.55%;平均输出功率提升了8.08%,效率提高10.41%。TRNSYS模拟结果与实验趋势一致,显示平均功率提升11.87%,效率提高10.05%。实验结果表明,冷却后的组件发电量显著增加,在测试期间比未冷却组件多产生了377 Wh的电能。基于发电性能的提升以及对延长组件使用寿命的潜在益处,该冷却系统具有良好的应用可行性。
English Abstract
Abstract Photovoltaic (PV) module efficiency decreases as the module temperature increases. Cooling PV panels enhances efficiency by reducing resistive losses, improving carrier mobility, reducing thermal stress, and increasing fill factor. In this article, a forced water circulation method is introduced to cool the PV module results in lowering its temperature and consequently increasing module productivity. This method uses a copper pipe heat exchanger (HX) attached to the back side of the PV module with forced water circulation. This cooling method is passive, cheap, simple and effective configuration especially in large scale plants. An experimental approach was conducted using two identical PV modules, one cooled and the other is not, to investigate the impact of cooling process system on module productivity in Jerash City-Jordan weather conditions. Experiments were conducted over six consecutive days, and results were compared with TRNSYS software. It was found that our method of cooling the PV panels results in average temperature reduction of 4.62 ° C that corresponds to 9.55%, average power enhancement of 8.08% and efficiency of 10.41%. TRNSYS simulated results confirms the experimental results trend with average power enhancement of 11.87% and efficiency of 10.05%. Experimental results demonstrated a significant increase in energy production, with the cooled module generating 377 Wh more electricity than the non-cooled module. The cooling system is feasible based on the productivity enhancement and prolonging the panels lifespan.
S
SunView 深度解读
该PV组件水冷技术对阳光电源光伏系统具有重要参考价值。研究证实降温4.62°C可提升功率8.08%,这为SG系列逆变器的MPPT算法优化提供温度补偿依据。建议将温度-功率模型集成到iSolarCloud平台,实现大型电站的热管理预测性维护。该被动冷却方案可与PowerTitan储能系统协同,利用夜间冷却水循环降低日间组件温度,提升系统全生命周期发电量。对于约旦等高温地区的1500V光伏电站,该技术可延长组件寿命并提高逆变器效率,具有显著经济价值。