← 返回
光伏发电技术 MPPT ★ 5.0

一种基于组件与环境温差预测光伏组件关键电压参数的解析模型

An analytical model for predicting photovoltaic module key voltage parameters incorporating the temperature difference between the module and ambient

语言:

中文摘要

摘要 与受控的实验室条件相比,光伏(PV)组件在实际运行条件下的电气性能受到动态环境因素非线性效应的影响。提高电压参数的预测精度,特别是最大功率点电压(V_mp),对于实现高效的最大功率点跟踪(MPPT)以及提升系统整体性能至关重要。传统的仅依赖组件温度和辐照度的模型难以充分反映户外气候的变化情况。本文提出了一种基于组件与环境之间温差(ΔT)的解析模型,用于预测电压参数,并考虑了二者之间的相互作用。首先,采用最大信息系数(MIC)等相关性分析方法,确定了ΔT与电压参数之间存在强烈的非线性相关关系;随后,将ΔT量化并引入传统转换公式中;最后,利用有限的历史数据,通过Levenberg–Marquardt(L-M)方法识别公式中的系数。所提出的模型在两个公开数据集中来自多种气候条件下的九组光伏组件(涵盖六种技术类型)的数据上进行了验证。结果表明,引入ΔT项后,传统模型的预测精度和环境适应性均得到显著提升。开路电压(V_oc)的均方根误差(RMSE)降低了0.1050至0.6389 V,V_mp的RMSE降低了0.1004至1.2484 V,且在高于40 ℃的高温条件下误差降低尤为显著。所识别出的模型系数表现出良好的稳定性和一致性。此外,针对相同光伏组件在不同气候条件下部署的预测结果验证了该模型具有良好的泛化能力。

English Abstract

Abstract Compared to controlled laboratory conditions, the electrical performance of photovoltaic (PV) modules under real operating conditions is influenced by the nonlinear effects of dynamic environmental factors. Improving voltage parameter accuracy, especially Maximum Power Point Voltage (V mp ), is crucial for efficient Maximum Power Point Tracking (MPPT) and overall system performance. Traditional models that rely solely on module temperature and irradiance fail to adequately capture outdoor climate variations. This paper proposes an analytical Model for predicting voltage parameters based on the temperature difference between the module and ambient(ΔT), considering their interaction. First, the strong nonlinear correlation between ΔT and voltage parameters was determined using correlation analysis methods such as the Maximal Information Coefficient (MIC). Then, ΔT was quantified and integrated into the traditional conversion formula. Finally, the formula coefficients were identified using the levenberg–marquardt (L-M) method with limited historical data. The proposed model was validated using data from nine PV module groups with six technologies under various climates from two public datasets. Results show that incorporating the ΔT formula improves prediction accuracy and environmental adaptability of traditional model. The RMSE for Open Circuit Voltage (V oc ) decreased by 0.1050 to 0.6389 V and for V mp by 0.1004 to 1.2484 V, with the reduction in error being more especially significant under high-temperature conditions above 40 ℃. The identified coefficients show good stability and consistency. Furthermore, predictions for the same PV modules deployed under different climate conditions validated the model’s good generalization ability.
S

SunView 深度解读

该温差修正电压预测模型对阳光电源SG系列光伏逆变器的MPPT算法优化具有重要价值。传统模型在高温工况下误差显著,该研究通过引入组件-环境温差(ΔT)量化非线性气候影响,使Vmp预测精度提升0.1-1.25V,尤其在40℃以上场景改善明显。可直接应用于1500V系统多路MPPT控制策略,结合iSolarCloud平台的实时气象数据,动态优化工作电压追踪范围,提升极端气候下的发电效率。该解析模型计算量小,适合嵌入逆变器DSP实现边缘智能化,为PowerTitan储能系统的光储协同控制提供更精准的功率预测基础。