← 返回
光伏发电技术 储能系统 ★ 5.0

基于开源低成本天空成像仪和混合深度学习技术的超短期太阳辐照度预测

Very short-term solar irradiance forecasting based on open-source low-cost sky imager and hybrid deep-learning techniques

作者 Martin Ansong · Gan Huang · Thomas N.Nyang’on · Robinson J.Musembi · Bryce S. Richards
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 294 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The Karlsruhe low-cost sky imager (KALiSI) developed from off-the-shelf components.
语言:

中文摘要

摘要 太阳辐照度(SI)预测对于光伏(PV)系统的可靠运行至关重要。这一点在非洲等地区尤为突出,因为这些地区的许多SI预测方法依赖于稀缺的历史数据,而电力网络本身存在的不稳定性又因SI的波动性而进一步加剧。准确的太阳能预测对于改善电网管理至关重要,可帮助运营商平衡供需关系并提升系统稳定性。基于地面的天空成像技术是一种有前景的SI预测方法,无需依赖大量历史数据。然而,商用天空成像仪价格昂贵且灵活性有限。本文介绍了卡尔斯鲁厄低本钱全天候成像仪(KALiSI),该设备由市售组件构成,能够拍摄高分辨率图像,组装成本低于600欧元。KALiSI安装在德国卡尔斯鲁厄,用于采集图像以训练一种卷积神经网络-长短期记忆网络(CNN-LSTM)模型,实现未来15分钟的全球水平辐照度(GHI)预测。该模型的均方根误差(RMS)范围为19–206 W/m²,相比之下,持续性模型(persistence)的误差范围为33–257 W/m²;而平均绝对误差(MA)方面,CNN-LSTM模型为15–144 W/m²,持续性模型为30–159 W/m²。本文还在相同地点将KALiSI图像用于模型预测的表现与商用天空成像仪在不同预测时域下的表现进行了比较。结果显示,KALiSI的归一化均方根误差和平均绝对误差分别高出6%和7%,在晴朗天气条件下存在部分偏差。这些结果表明,KALiSI适用于超短期太阳辐照度预测,其开源设计为发展中国家提供了一种低成本的解决方案。

English Abstract

Abstract Solar irradiance (SI) forecasting is vital for reliable photovoltaic (PV) operation. This is especially true for regions like Africa where many SI forecasting approaches rely on scarce historical data and the inherent instabilities of electric grids are further compounded by SI variability. Accurate solar forecasting is essential for improving grid management, enabling operators to balance supply and demand and enhance stability. Ground-based sky imaging is a promising technique for SI forecasting that do not require extensive historical data. However, commercial sky imagers are expensive and offer limited flexibility. This paper introduces the Karlsruhe low-cost all-sky imager (KALiSI), made from off-the-shelf components that captures high-resolution images and can be assembled for less than €600. The KALiSI was installed in Karlsruhe, Germany, to collect images to train a convolution neural network-long short-term memory (CNN-LSTM) model for 15 min-ahead forecasting of global horizontal irradiance (GHI). The root mean squared (RMS) error of the model ranges from 19–206 W/m 2 , compared to 33–257 W/m 2 for persistence, while mean absolute (MA) errors range from 15–144 W/m 2 for CNN-LSTM and 30–159 W/m 2 for persistence. The model’s performance using KALiSI’s images was compared with a commercial sky imager at the same location across various forecast horizons. The KALiSI showed normalised RMS error and MA error values of 6 % and 7 % higher, respectively, with some discrepancies noted on clear days. These results show the KALiSI’s suitability for very short-term forecasting and its open-source design offers a low-cost solution for developing countries.
S

SunView 深度解读

该低成本天空成像超短期光伏预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。15分钟前瞻预测可优化MPPT算法响应速度,提升逆变器在云层遮挡等突变工况下的功率跟踪精度。结合iSolarCloud平台,CNN-LSTM预测模型可为PowerTitan储能系统提供精准充放电调度依据,降低电网波动冲击。开源低成本方案(<€600)特别适合非洲等欠发达地区项目部署,与公司储能系统海外拓展战略高度契合,可作为智能运维增值服务模块集成。