← 返回
考虑气候应力和盐度效应的海上光伏组件应用退化率分析
Degradation rate analysis of offshore PV module applications considering climatic stresses and salinity effects
语言:
中文摘要
摘要 人口密度的增加导致对土地空间的需求上升以及土地资源竞争加剧。因此,漂浮式光伏(FPV)系统应运而生,以利用水面空间替代陆地资源。然而,海洋环境中的FPV组件由于暴露于高相对湿度(RH)、温度变化、风速、盐度以及紫外线(UV)辐射等条件下,其性能会迅速下降。因此,有必要采取措施以促进对光伏组件寿命的预测,从而帮助投资者和决策者推动FPV电站的建设。本文提出了基于大气数据输入的物理退化模型,用于比较海上与陆上光伏组件的退化速率。为了分析气候应力对海上光伏组件的影响,采用了适用于陆上光伏组件的退化模型。此外,为提高退化率预测的准确性,采用粒子群优化算法(PSO)对退化模型的参数进行评估。结果表明,所采用的模型有效,实际值与预测值之间的误差降低了±0.5%。此外,本研究还探讨了盐分效应对能量退化率的影响,并估算了影响光伏组件使用寿命预期的关键参数。研究结果表明,在盐度效应作用下,盐分在海上光伏组件表面的积聚使退化率分别加速了0.05%和0.13%,从而导致组件寿命缩短2至5年。
English Abstract
Abstract Increasing in population density has led to increased demand and competition for land space. Therefore, floating photovoltaic (FPV) systems have emerged to exploit water surfaces instead of relying on land space. FPV modules in marine settings lose their performance quickly because they are exposed to high relative humidity (RH), temperature differences, wind speed, salinity, and ultraviolet (UV) radiation. Thus, it has become necessary to take measures to facilitate the prediction of the life of PV modules to help investors and decision-makers adopt the construction of FPV stations. This paper presents physical degradation models based on atmospheric data inputs to compare the degradation rates of offshore PV modules with those on land. To analyze the impact of climate stresses on offshore PV modules, degradation models applied to land-based PV modules are used. Moreover, to improve the accuracy of the degradation rate, particle swarm optimization (PSO) is used to evaluate the parameters of degradation models. The results confirm the validity of the adopted models by reducing the error between the actual and predicted values by ± 0.5 %. In addition, this study addresses the energy degradation rates due to the effect of salts and estimates the parameters that affect the service life expectations of PV modules. The results demonstrate that salt accumulation on offshore PV modules accelerates the degradation rate by 0.05 % and 0.13 % under salinity effect, thus reducing the lifetime of the modules from two to 3 to 5 years.
S
SunView 深度解读
该研究揭示海上光伏组件因高湿、盐雾侵蚀导致年降解率增加0.05-0.13%,寿命缩短2-5年,对阳光电源SG系列逆变器的海洋环境适应性设计具有重要参考价值。建议在漂浮式光伏系统中强化MPPT算法的动态补偿能力,针对盐雾腐蚀导致的功率衰减特性优化逆变器输入电压范围。结合iSolarCloud平台可开发基于气候应力模型的预测性维护功能,通过PSO算法实时修正降解预测模型,为海上光储一体化项目的PowerTitan储能系统容量配置提供全生命周期优化依据,延长系统经济运行期限。