← 返回
光伏发电技术 储能系统 ★ 5.0

带有空心扭曲带插入吸热管的光伏-热太阳能集热器性能研究

Performance of a photovoltaic-thermal solar collector with hollow twisted ribbon inserted in absorber tubes: A theoretical and experimental study

语言:

中文摘要

摘要 光伏-热(PVT)太阳能集热器是一种创新技术,将光伏发电与热能收集集成于单一装置中。由于温度升高,光伏系统的电输出会遭受损失,而不恰当的冷却方式会导致温度过度上升。传统吸热管因传热效率较低,限制了其发电能力。为提升热量提取效率,同时降低光伏系统工作温度并最大化电能与热能的联合产出,吸热管的设计需通过多种改进手段、先进材料或被动扰流结构进行优化。针对该问题的解决方案将推动高效率PVT系统的发展,实现经济稳定性,并促进混合太阳能技术的广泛应用。本研究探讨在吸热管内插入空心扭曲带的影响,采用ANSYS建立的计算流体动力学(CFD)模型对温度分布进行模拟,并确定插入件的最佳螺距比。实验部分通过室内太阳模拟器开展评估。模拟结果表明,在800 W/m²辐照强度和0.04 kg/s质量流量条件下,带空心扭曲带插入件的PVT系统平均模块温度为47.23 °C,显著低于无插入件系统的88.57 °C,从而在不同质量流量和辐照水平下显著提升了热效率。在螺距比为0.25、质量流量为0.06 kg/s时,实现了最高达30.05%的能量传递速率增强。实验数据显示,在较高辐照强度下,开路电压(Voc)下降,短路电流(Isc)上升,最大输出功率(Pmax)介于19.97 W至20.39 W之间,模块平均温度升至96.21 °C,导致光伏效率下降至8.28%。在806 W/m²辐照下,当质量流量从0.01 kg/s增至0.06 kg/s时,模块平均温度由55.23 °C降至40.13 °C,光伏效率相应从6.97%提高到7.78%。然而,在0.07 kg/s时效率略有下降,表明最佳冷却效果出现在0.06 kg/s。

English Abstract

Abstract Photovoltaic Thermal (PVT) Solar Collector is an innovative technology that merges photovoltaic and thermal energy generation into a single device. The electrical output of PV systems suffers losses due to temperature rise, and inappropriate cooling methods lead to excessive temperature rises. The power output of conventional absorber tubes is limited due to their poor heat transfer efficiency. Absorber tube design requires optimal optimization through various improvements or advanced materials and passive perturbs to enhance heat extraction while minimizing PV system temperatures and maximizing energy generation for electricity and heating. Solution-focused improvements to this challenge will lead to the development of higher-efficiency PVT systems, achieve economic stability, and increase the adoption of hybrid solar energy. This study explores the impact of hollow twisted ribbon inserts in absorber tubes, using computational fluid dynamics (CFD) models created in ANSYS to simulate temperature variations and determine the optimum pitch ratio of the inserts. Experimental evaluations were conducted with an indoor solar simulator. Simulation results indicate that the PVT system with hollow twisted ribbon inserts maintains a lower average module temperature (47.23 °C) compared to the system without inserts (88.57 °C) at 800 W/m 2 and 0.04 kg/s, significantly enhancing thermal efficiency across various mass flow rates and irradiance levels. The highest energy transfer rate enhancement (30.05 %) was recorded at a pitch ratio of 0.25 and a mass flow rate of 0.06 kg/s. Experimental data show a drop in the open circuit voltage (V oc ) and an increase in the short circuit current (I sc ) at higher irradiance levels, with maximum power (P max ) ranging from 19.97 W to 20.39 W, and a mean module temperature rise to 96.21 °C, resulting in a PV efficiency decrease to 8.28 %. At 806 W/m 2 , from 0.01 kg/s to 0.06 kg/s, the mean module temperature was reduced from 55.23 °C to 40.13 °C and increased PV efficiency from 6.97 % to 7.78 %. However, efficiency slightly declined at 0.07 kg/s, indicating optimal cooling at 0.06 kg/s.
S

SunView 深度解读

该PVT光热联供技术对阳光电源SG系列光伏逆变器具有重要参考价值。研究表明通过优化吸热管设计可将组件温度从88.57°C降至47.23°C,光伏效率提升至7.78%,这与我司MPPT优化技术形成协同。温度控制策略可应用于1500V高压系统热管理,中空扭带强化传热方案可启发SiC/GaN功率器件散热设计。建议将该热电协同思路融入iSolarCloud平台的温度预测模型,优化逆变器降额曲线,并探索PVT系统与PowerTitan储能的联合调度,提升综合能效。