← 返回
光伏发电技术 储能系统 ★ 5.0

半干旱气候下基于仿生设计的光伏/热系统集成设计:结合绿色纳米流体与复合相变材料

Integrated design of a bio-inspired photovoltaic/thermal system with green nanofluids and composite phase change materials for semi-arid climates

语言:

中文摘要

摘要 光伏/热(PV/T)系统迫切需要能够同时解决效率限制和环境问题的解决方案。本研究提出了三项关键创新以应对这些局限性:(1)仿生吸热管,其结构模仿黑蝎尾部几何形态(此前在PV/T系统中尚未探索的仿生学方法);(2)丁香功能化多壁碳纳米管/水(MWCNT/H₂O)纳米流体——一种新型环保冷却剂,可同时增强传热性能并降低纳米颗粒毒性;(3)复合相变材料(CPCMs),用于表面冷却及提升发电效率,并开展年度二氧化碳(CO₂)排放减少量分析。这些创新协同提升了系统性能,同时兼顾了环境影响,而这一方面在以往的PV/T研究中鲜有涉及。采用Ansys-Fluent 2021软件在瞬态热通量条件下(上午11:00至下午16:00)进行数值模拟,模拟条件代表半干旱气候环境(伊朗德黑兰夏季),并通过实验验证确保结果准确性。结果表明,优化后的螺旋扰流器设计(模型3)相较于基准几何结构,平均光伏表面温度降低了10.2%(降至约43.36°C),平均流体出口温度提高了3.85%(升至约32.81°C)。此外,在不同浓度下使用绿色纳米流体可使热效率和电效率分别最高提升15.38%和1.43%。绿色纳米流体使导热系数提高约12.22%,实现了75.2%的峰值热效率(+15.38%提升)和15.23%的电效率(+0.83%提升)。进一步优化复合相变材料厚度(1.2 cm)可使光伏组件温度再降低3.33%,同时使电效率提高1.01%。从环境角度看,该系统实现了显著的CO₂减排效果,其中模型3结合使用C-MWCNTs/H₂O: 0.175 wt%纳米流体,在15年运行周期内累计减少32.29吨CO₂排放(+143.7%改善)。

English Abstract

Abstract Photovoltaic/thermal (PV/T) systems urgently require solutions that simultaneously address efficiency limitations and environmental concerns. This study introduces three key innovations to address these limitations: (1) bio-inspired absorber tubes modeled after the black scorpion’s tail geometry (a previously unexplored biomimetic approach for PV/T systems), (2) Clove-functionalized MWCNT/H 2 O nanofluids—a new eco-friendly coolant class that simultaneously enhances heat transfer and reduces nanoparticle toxicity, and (3) Composite phase change materials (CPCMs) for surface cooling and electrical efficiency enhancement, with annual carbon dioxide emission (CO 2 ) reduction analysis. These innovations synergistically improve performance while addressing environmental concerns—an aspect underexplored in previous PV/T research. Numerical simulations were conducted using Ansys-Fluent 2021 under transient heat flux conditions (11:00 AM to 16:00 PM) representative of a semi-arid climate (summer in Tehran- Iran), with experimental validation to ensure accuracy. The results demonstrate that the optimized helical turbulator design (Model 3) reduces average PV surface temperature by 10.2 % (to ∼43.36 °C) and increases average fluid outlet temperature by 3.85 % (to ∼32.81 °C) compared to baseline geometries. Furthermore, the use of green nanofluids at varying concentrations increases thermal and electrical efficiencies by up to 15.38 % and 1.43 %, respectively. Green nanofluids enhance thermal conductivity by ∼12.22 %, achieving a peak thermal efficiency of 75.2 % (+15.38 % improvement) and electrical efficiency of 15.23 % (+0.83 % improvement). CPCM thickness optimization (1.2 cm) further reduces PV temperature by 3.33 % while improving electrical efficiency by 1.01 %. From an environmental perspective, the system achieves substantial CO 2 reductions, with Model 3 and the inclusion of C-MWCNTs/H 2 O: 0.175 wt% nanofluid leading to a 32.29-ton decrease (+ 143.7 % improvement) over a 15-year period.
S

SunView 深度解读

该生物仿生PV/T系统对阳光电源SG系列光伏逆变器与ST储能系统集成具有重要价值。研究中复合相变材料(CPCM)的温控技术可应用于PowerTitan储能系统热管理,降低3.33%运行温度并提升效率1.01%。绿色纳米流体冷却方案可优化1500V高压系统的MPPT效率,其15.38%的热效率提升为iSolarCloud平台的智能温控算法提供数据支撑。15年减排32.29吨CO₂的环保效益契合阳光电源双碳战略,可融入ESS解决方案的全生命周期碳足迹管理体系。