← 返回
光伏发电技术 储能系统 DAB ★ 5.0

基于刚体与气弹模型风洞试验对比的大跨度柔性光伏支架结构风致振动响应气弹效应研究

Research on aeroelastic effect of wind-induced vibration responses of large-span flexible photovoltaic support structure based on wind tunnel experiment comparison of rigid body and aeroelastic model

语言:

中文摘要

摘要 与固定式光伏(PV)支架结构相比,大跨度柔性光伏支架结构(LSFPS)在强风作用下极易产生显著的变形和位移,导致其气弹效应不可避免。在此情况下,将刚体测压试验与有限元分析(FEA)相结合的单向流固耦合(FSI)方法无法准确预测风致振动响应。此外,现有的LSFPS气动弹性风洞试验面临模型缩尺复杂和测量技术受限的挑战。因此,迫切需要发展一种高精度的气弹实验方法,以系统探究气弹效应对LSFPS风致振动的影响,并通过评价系数量化其影响程度。为此,本研究提出了一种集成气动-刚度-质量缩尺的LSFPS气弹模型设计方法。同时,开发了一套基于激光位移计、张力传感器和高速成像技术的高精度、无干扰点-线-面三维气弹实验测量系统。此外,引入了位移修正公式以考虑光伏组件变形及仪器精度误差。本文开展了系列单向FSI分析与LSFPS气弹风洞试验,系统分析了风致响应在时域/频域特性、能量演化过程及模态能量分布方面的差异,揭示了结构参数变化对气弹效应的影响规律。研究结果表明,所提出的LSFPS气弹模型设计方法与测量系统能够准确反映并捕捉三维气弹性风致振动响应。忽略气弹效应会导致在高风速下对LSFPS的动力放大效应被高估,而对LSFPS阵列的前后排遮挡效应被低估。气弹效应还改变了共振模态的重要性和能量带宽,增强了模态能量的集中程度。迎风侧首排的平均值和标准差受气弹效应的影响随跨度呈线性增长,而迎风侧首排与末排均值之差则随行间干扰因子呈线性增长。

English Abstract

Abstract Compared to fixed photovoltaic (PV) support structure, the large-span flexible PV support structure (LSFPS) is highly prone to significant deformation and displacement upon strong winds, rendering its aeroelastic effect unavoidable. Under this circumstance, the one-way fluid–structure interaction (FSI) approach which combines rigid body pressure wind tunnel experiment and finite element analysis (FEA) fails to predict wind-induced vibration responses accurately. Moreover, existing LSFPS aeroelastic wind tunnel experiments are challenged by complicated model scaling and limited measurement technology. There is an urgent need to develop a high-precision aeroelastic experimental method to systematically explore the aeroelastic effect on LSFPS wind-induced vibrations and quantify its impact through evaluation coefficients. Hence, a LSFPS aeroelastic model design method with integrated aerodynamic-stiffness-mass scaling was proposed in this study. Besides, a high-precision, no-inference point-line-surface three-dimensional aeroelastic experiment measurement system based on laser displacement meters, tension sensors and high-speed imaging technology was developed. Additionally, a displacement correction formula was introduced to account for PV module deformation and instrument precision errors. A series of one-way FSI analyses and aeroelastic wind tunnel experiments on LSFPS were conducted, systematically analyzing differences in time/frequency domain characteristics, energy evolution, and modal energy distribution of wind-induced responses, while revealing the influence of structural parameter changes on aeroelastic effects. The findings demonstrate that the proposed aeroelastic model design method and measurement system for LSFPS can accurately reflect and capture the three-dimensional aeroelastic wind-induced vibration responses. The dynamic magnification effect of LSFPS under high wind speed is overestimated by ignoring aeroelastic effect, while the inter-row shielding effect of the LSFPS array is underestimated. The aeroelastic effect also alters the significance of resonance modes and the energy bandwidth, enhancing the concentration of modal energy. Aeroelastic effect on the windward first row’s mean and standard deviation scale linearly with span, while the mean difference between windward first and last rows scale linearly with the inter-row interference factor.
S

SunView 深度解读

该大跨柔性光伏支架气动弹性研究对阳光电源SG系列逆变器和智能运维系统具有重要价值。研究揭示的气弹效应会改变支架动态响应特性,直接影响组件应力分布和MPPT优化效果。建议将风振响应数据集成到iSolarCloud平台,建立基于气弹修正系数的预测性维护模型,优化大型柔性支架电站的逆变器配置策略。研究提出的三维测量方法可用于验证1500V高电压系统在极端风载下的安全裕度,为PowerTitan储能系统与柔性支架光伏电站的协同控制提供结构动力学边界条件,提升系统整体抗风可靠性。