← 返回
光伏发电技术 储能系统 ★ 5.0

局部气流场与光伏系统动态耦合模型用于光伏性能预测

A dynamic coupled model between the local airflow field and photovoltaic system for photovoltaic performance prediction

语言:

中文摘要

摘要 太阳能光伏(PV)面板是实现城市碳中和最具可行性的选择之一。当前光伏转换效率通常低于20%,导致大量余热释放,进而影响局部环境条件。微气候变量如空气温度和风速会影响光伏组件的传热过程及转换效率,这些效应可能进一步加剧城市热环境并降低光伏转换效率。尽管现有研究主要集中于环境变量对光伏性能的影响,局部气流场与光伏系统之间复杂的相互作用仍需深入探究。本研究旨在建立一种新型耦合模型,将光伏面板内部的传热与发电过程与局部气流场进行整合,从而在不同环境条件下更准确地预测光伏系统的性能。为此构建了缩尺物理模型,用于验证涵盖光伏输出功率、光伏板前后表面温度、局部气流温度以及光伏板下方风速等参数。基于参数特性进行了误差分析,并得出了详细结论。光伏表面温度和局部空气温度的均方根误差分别低于1.65℃和3.51℃;光伏输出功率的平均相对误差低于8.58%;光伏板下方风速的平均偏差误差介于−3.20%至9.97%之间。结果表明,所提出的模型优于传统方法,能够为城市环境中光伏系统性能提供更可靠的预测。本研究有助于提高光伏系统设计的效率并优化其部署,支持城市可持续性与能源效率目标的实现。

English Abstract

Abstract Solar photovoltaic (PV) panels are among the most viable options for urban carbon neutrality. Current PV conversion efficiency, often under 20%, leads to excess heat release, which affects local environmental conditions. Microclimatic variables, such as air temperature and wind speed, affect PV heat transfer and conversion efficiency. These effects can further exacerbate urban temperatures and reduce PV conversion efficiency. While existing research predominantly concentrates on the impact of environmental variables on PV performance, the intricate interplay of local airflow field and PV system needs further investigation. This research aims to develop a novel coupled model integrating the internal heat transfer and electricity generation processes of PV panels with the local airflow field, providing a more accurate prediction of PV system performance under varying environmental conditions. A scaled physical model was constructed to validate parameters encompassing PV power output , front and back PV surface temperatures, local airflow temperatures, and wind speeds under the PV panels. An error analysis was conducted based on parameter characteristics and detailed conclusions were drawn. The root mean square error for PV surface temperature and local air temperatures were below 1.65℃ and 3.51℃, respectively. The mean relative error for PV power output was below 8.58%. The mean bias error for wind speeds under PV panels was −3.20% to 9.97%. Results demonstrate the proposed model outperforms traditional approaches, offering more reliable predictions for PV system performance in urban environments. This study contributes to more efficient PV system design and optimized deployment, supporting urban sustainability and energy efficiency goals.
S

SunView 深度解读

该动态耦合模型对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。通过精准预测局部气流场对组件温度和发电效率的影响(误差<8.58%),可优化MPPT算法的温度补偿策略,提升逆变器在复杂微气候下的转换效率。模型可集成至iSolarCloud智能运维平台,实现基于气象-热场耦合的发电功率预测和散热优化,指导城市屋顶电站的组件布局设计。对ST储能系统的热管理策略也有借鉴意义,助力提升系统全生命周期能效表现。