← 返回
一种基于计算流体力学模拟光伏板在农光互补条件下对微气候影响的创新方法
An innovative method based on CFD to simulate the influence of photovoltaic panels on the microclimate in agrivoltaic conditions
| 作者 | Vernier Joseph · Berlioux Baptiste · Amiot Baptiste · Edouard Sylvain · Ferrand Martina · Dupont Erica · Caruyer Célinea · Trotin Vincent · Combes Didier · Massin Patricka |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 297 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 热仿真 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Successful evaluation of 3D CFD simulations of flow dynamics and radiation within photovoltaic and agrivoltaic systems against measurements. |
语言:
中文摘要
摘要 评估光伏板对太阳辐射和红外辐射、风速以及湍流的影响,对于理解这些光伏板在农光互补(APV)系统中对作物或牲畜的影响,以及在漂浮式光伏(FPV)装置中对水体水库的影响至关重要。然而,目前先进的数值模拟方法通常需要巨大的计算资源,并且很少能同时考虑多种物理现象。本研究提出在计算流体力学(CFD)求解器code_saturne中,于非定常雷诺平均纳维-斯托克斯方程(U-RANS)和离散坐标辐射模型(DOM)内引入源项与汇项的方法,从而实现存在障碍物情况下太阳辐射与红外辐射、风速及湍流的高效时间模拟。首先,该方法被应用于一个缩小比例的地装光伏电站的风洞实验数据进行验证,结果表明在光伏板高度处来流风速为2.5 m/s、湍动能为0.05 m²/s²的条件下,速度场和湍流场的均方根误差分别小于0.12 m/s和0.05 m²/s²。随后,该方法被应用于一个实际的APV光伏电站,以验证太阳辐射和红外辐射的模拟效果,在太阳辐射达到500 W/m²、红外辐射约为350 W/m²的情况下,太阳辐射模拟的平均均方根误差小于61.0 W/m²,红外辐射模拟的平均均方根误差小于14.0 W/m²。这种创新方法能够有效分析障碍物对微气候的影响,进而研究蒸散等关键参数的变化,为全面开展光伏板对其周围环境影响的数值研究开辟了道路,尤其适用于农光互补和漂浮式光伏系统的配置分析。
English Abstract
Abstract Assessing the impact of photovoltaic panels on solar and infrared radiation, wind speed , and turbulence is essential for understanding how these panels may affect crops or livestock in agrivoltaic (APV) systems, as well as water reservoirs in floating photovoltaic (FPV) installations. However, state-of-the-art numerical methods require huge computing resources and rarely account for many physical phenomena at the same time. This study suggests the implementation of source and sink terms within the Computational Fluid Dynamics (CFD) solver code_saturne, specifically in the Unsteady Reynolds-Averaged Navier–Stokes (U-RANS) equations and the Discrete Ordinate Radiation Model (DOM). It enables time-efficient simulations of solar and infrared radiation, wind speed, and turbulence in the presence of obstacles. First, this method is compared to wind tunnel measurements of velocity and turbulence fields for a downsized ground-mounted photovoltaic plant, RMSE v e l < 0 . 12 m/s , and RMSE t u r b < 0 . 05 m 2 / s 2 , for a flow with a wind speed of 2.5 m/s and a turbulent kinetic energy of 0.05 m 2 / s 2 at the PV panel height. Then, it has been applied to an actual APV power plant to validate solar and infrared radiation simulations, on average RMSE s o l a r < 61 . 0 W/m 2 , and RMSE i r < 14 . 0 W/m 2 , for a solar radiation reaching 500 W/m 2 and an IR radiation of about 350 W/m 2 . This innovative method allows for the examination of how obstacles affect the microclimate , and subsequently, key parameters such as evapotranspiration . It paves the way for comprehensive numerical studies of the influence of photovoltaic panels on their environment, with a particular focus on APV and FPV configurations.
S
SunView 深度解读
该CFD微气候仿真技术对阳光电源农光互补和漂浮光伏系统具有重要价值。可应用于SG系列逆变器在APV场景的热管理优化,通过精确模拟光伏板对风速、辐射和湍流的影响,优化PowerTitan储能系统在复杂微气候下的散热设计。该方法可集成至iSolarCloud平台,实现基于环境参数的预测性维护,提升ST系列PCS在农光互补电站的运行效率。源汇项建模思路可启发三电平拓扑功率器件的热仿真创新,降低SiC/GaN器件在高温高湿环境下的失效风险。