← 返回
光伏发电技术 储能系统 ★ 5.0

通过优化倾角提高光伏系统效率的改进方法

An improved approach for enhancing the PV system efficiency through optimization of tilt angle

语言:

中文摘要

摘要:光伏(PV)系统通常采用固定支架模块,全年保持固定的朝向。然而,这种配置并不能实现能量输出的最优化,因为模块接收到的太阳辐照度取决于太阳位置和大气条件。为解决这一问题,本文提出了一种改进的优化方法,用于调整月度倾角(TA),旨在降低能源成本的同时提高光伏系统的输出功率。该研究建立了一种改进的倾角数学模型,能够在给定区域内安装最大数量的光伏组件,并避免阴影效应的影响。与现有研究不同,本工作在所建立的模型中综合考虑了组件效率、光伏系统的成本以及地理位置坐标、月份、土地面积、赤纬角和方位角等特定地点变量。通过考虑这些参数,本研究利用MATLAB软件实现了月度倾角的调整,以获得每月最优倾角(OTA)。结果及与现有研究的对比表明,该方法显著降低了平准化度电成本(LCOE),同时提升了五个地理上相异地区的光伏系统发电量,这些地区分别代表了国家中部、南部、北部、东部和西部区域多样的气候条件。与现有文献相比,LCOE的降幅分别达到:中部地区(平原)195.14%,南部地区(沙漠)196.952%,北部地区(山区)195.176%,西部地区(沿海)197.612%。同样,输出功率的提升幅度分别为:中部地区3.78%、南部地区8.84%、北部地区1.66%、西部地区2.11%。

English Abstract

Abstract Photovoltaic (PV) systems generally incorporate fixed-mount modules that maintain an immovable orientation throughout the year. However, this does not optimize energy output, as the solar irradiance received by modules depends on the sun’s position and atmospheric conditions. To address this issue, an improved optimization approach for adjustment of the monthly tilt angle (TA) has been proposed in this research work, aiming to decrease energy prices while increasing PV output power. It develops an improved mathematical model of TA that allows the installation of the maximum number of PV modules within a given area while avoiding the shading effects. In contrast to existing work, the proposed work incorporates module efficiency, the PV system’s cost, and site-specific variables such as geographic coordinates, month, land area, declination, and azimuth angles in the developed model. By considering these parameters, this work has implemented a monthly adjustment of the TA to achieve a monthly optimized tilt angle (OTA) using MATLAB software. The results and comparison with existing work illustrate that the proposed work has significantly contributed to the reduction of the LCOE while simultaneously enhancing the power generation of a PV system for five geographically distinct locations that signify the diversity of climatic conditions in the country’s central, southern, northern, eastern and western regions. In comparison to existing literature, the percentage reduction of LCOE has been achieved at 195.14% for the central region (plain), 196.952% for the southern region (desert), 195.176% for the northern region (hilly area), and 197.612% for the western region (coastal). Similarly, the increase in output power has been achieved at 3.78%, 8.84%, 1.66%, and 2.11% for the central region, southern region, northern region, and western region respectively.
S

SunView 深度解读

该倾角优化技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。通过月度最优倾角调整,可使LCOE降低195%以上,发电量提升1.66%-8.84%,这与我司MPPT优化技术形成协同效应。建议将该数学模型集成至iSolarCloud智能运维平台,结合地理坐标、气候数据和组件效率参数,为固定式光伏电站提供动态倾角调整建议,配合SG逆变器的1500V系统和三电平拓扑技术,进一步提升系统整体发电效率和经济性,特别适用于不同气候区域的大型地面电站优化改造。